

Sociedad Cubana de Cardiología

Editorial

Anuario 2012: Cardiopatías congénitas. Las revistas de las Sociedades Nacionales presentan una selección de las investigaciones que han impulsado avances recientes en Cardiología Clínica

Almanac 2012: Congenital heart disease. The National Society Journals present selected research that has driven recent advances in Clinical Cardiology

Michael Burch^a, and Nathalie Dedieu^b

Full English text of this article is also available

INFORMACIÓN DEL ARTÍCULO

Recibido en Heart: 21 de mayo de 2012 Aprobado en Heart: 29 de mayo de 2012 Recibido en CorSalud: 20 de octubre de 2012 Aprobado en CorSalud: 21 de octubre de 2012

Este artículo fue publicado por primera vez en la revista Heart [2012;98(21):1555-61. doi: 10.1136/heartjnl-2011-301538. En línea el 2 de septiembre de 2012] y se reproduce con permiso de los autores y de la Red de Editores de la Sociedad Europea de Cardiología. Es una publicación simultánea en todas las revistas de las Sociedades Nacionales pertenecientes a la Sociedad Europea de Cardiología y en otras revistas seleccionadas.

RESUMEN

Este Anuario destaca trabajos recientes sobre cardiopatías congénitas que han sido publicados en las principales revistas de Cardiología. Se citan más de 100 artículos. Los subtítulos se utilizan para agrupar los trabajos relevantes y permitir que los lectores se concentren en sus temas de interés, pero no pretenden abarcar todos los aspectos de las cardiopatías

M Burch
Great Ormond Street Hospital
Londres WC1N 3JH, UK
Correg electrónico: hurchm@gg

Correo electrónico: burchm@gosh.nhs.uk

congénitas.

Palabras Clave: Cardiopatías Congénitas; Insuficiencia Cardíaca; Cirugía; Cateterismo Cardíaco

ABSTRACT

This Almanac highlights recent papers on congenital heart disease in the major cardiac journals. Over 100 articles are cited. Subheadings are used to group relevant papers and allow readers to focus on their areas of interest, but are not meant to be comprehensive for all aspects of congenital cardiac disease.

Key words: Heart Defects, Congenital; Heart Failure; Surgery; Heart Catheterization

^a Great Ormond Street Hospital. Londres, Reino Unido.

^b Departamento de Cardiología Pediátrica, Royal Brompton Hospital. Londres, Reino Unido.

EPIDEMIOLOGÍA

La prevalencia de las cardiopatías congénitas en Europa fue recientemente informada en dos importantes trabajos. Los datos de una base de datos central para 29 registros poblacionales en 16 países mostraron una prevalencia total de 8 por 1000¹. La tasa de detección global de cardiopatías congénitas prenatales no cromosómicas fue sólo del 20 %, aunque el 40 % de los casos graves fueron diagnosticados antes del nacimiento. Se calcula que cada año en la Unión Europea nacen 36.000 niños con cardiopatía congénita y otros 3.000 son diagnosticados con esta misma afección, pero mueren por interrupción del embarazo debido a la anomalía fetal. En una revisión sistemática² de 114 artículos y 2.409.1867 nacidos vivos, la prevalencia de las cardiopatías congénitas aumentó con el tiempo de 0,6/1000 en 1930 a 9,1/1000 después de 1995. El índice se estabilizó en los últimos 15 años, pero significa que 1,35 millones de niños nacen cada año con cardiopatía congénita. La prevalencia fue mayor en Europa que en América del Norte.

Mediante la utilización de datos del Registro de malformaciones congénitas de París³ se observó un aumento del riesgo de cardiopatías congénitas por causa de las técnicas de reproducción asistida. El mayor riesgo variaba con el método de la técnica de reproducción asistida y el tipo de anomalía cardíaca. Los autores especulan que esto puede ser debido a la tecnología para la reproducción o a la causa subyacente de infertilidad de la pareja.

GENÉTICA

Tres cuartas partes de los pacientes con síndrome de supresión 22q11.2 (22q11.2DS) presentan una cardiopatía congénita y, aunque es una práctica común hacer la prueba del 22q11.2DS a todos los niños con lesiones cardíacas típicas, muchos pacientes adultos no han sido investigados. Se realizó una revisión en una población adulta de 479 pacientes con lesiones típicas⁴ (tetralogía de Fallot, atresia pulmonar y comunicación interventricular). Ya se conocía que veinte pacientes presentaban 22q11.2DS pero se detectó una microsupresión en otros 24 pacientes. Los autores consideran que, como el síndrome tiene implicaciones clínicas y reproductivas significativas, las pruebas genéticas deben ser consideradas en todos los pacientes adultos con tetralogía de Fallot y atresia pulmonar con comunicación interventricular.

La tetralogía de Fallot es común en individuos con

supresión hemicigota del cromosoma 22q11.2 que elimina el factor de transcripción cardíaco TBX1. Los exones TBX1 fueron secuenciados en 93 pacientes con tetralogía no sindrómica⁵. Se realizaron análisis de polimorfismo de un solo nucleótido en 356 pacientes con tetralogía, en sus padres y en controles sanos. Se identificaron tres nuevas variantes no presentes en 1.000 cromosomas de controles sanos étnicamente idénticos. Este estudio demostró que las variantes poco frecuentes de TBX1 con consecuencias funcionales están presentes en una pequeña proporción de pacientes con tetralogía no sindrómica. El tema controversial de la utilización e interpretación de las pruebas genéticas fue revisado por Caleshu *et al.*⁶.

En un estudio de siete familias se demostró que la transposición familiar de las grandes arterias era causada por múltiples mutaciones en los genes de lateralidad⁷. Esto proporciona evidencia de que algunos casos de transposición familiar son causados por mutaciones en los genes de lateralidad, y por lo tanto, forman parte del mismo espectro patológico del síndrome de heterotaxia, lo cual habla en favor de un modo oligogénico o complejo de herencia en estas genealogías. El editorial de Keavney⁸ consideró lo anterior como un paso útil en la comprensión de la transposición. La homocisteína es conocida como un factor de riesgo independiente para la cardiopatía congénita por lo que se puede esperar que las anomalías genéticas que afectan a la homocisteína influyan en la incidencia de problemas cardíacos congénitos. Esto quedó demostrado cuando una variante funcional del intrón-1 de metionina sintetasa reductasa aumentó significativamente el riesgo de cardiopatía congénita en la población China de Han9.

CARDIOLOGÍA FETAL

La cardiología fetal sigue siendo una piedra angular de la práctica cardíaca congénita. El artículo de Marek *et al.*¹⁰ ofrece una visión general única del diagnóstico prenatal en la República Checa, que en virtud de la estricta organización de los servicios de salud posibilitó el desarrollo de un registro nacional integral durante más de dos décadas. Se alcanzaron algunos éxitos particulares y en los últimos años, el diagnóstico prenatal del síndrome de cavidades izquierdas hipoplásicas alcanzó el 95,8 %, mientras que la transposición se diagnostica en sólo el 25,6 % de los casos.

Existe un debate sobre si el desarrollo prenatal de las cámaras cardíacas depende del flujo, pero un mag-

nífico artículo de Stressig et al., realizado en Bonn¹¹, demostró que el flujo preferencial a las cavidades derechas en el contexto de una hernia diafragmática sí perjudica el desarrollo de las cavidades izquierdas.

El bloqueo aurículo-ventricular fetal aislado se examinó en un estudio retrospectivo europeo de 175 casos 12 . Los factores de riesgo para un mal resultado fueron la gestación < 20 semanas, la frecuencia ventricular < 50/min, la hidropesía y la función ventricular afectada. No se ha observado un efecto significativo del tratamiento con corticoides. En un estudio multicéntrico francés, 13.141 pacientes con bloqueo aurículo-ventricular no inmune, diagnosticados en el útero o hasta la edad de 15 años, recibieron un seguimiento a largo plazo y mostraron resultados sorprendentemente buenos, sin muertes o miocardiopatía dilatada en un seguimiento medio de 11,6 \pm 6,7 años.

El bloqueo aurículo-ventricular puede reflejar la exposición prenatal a anticuerpos anti-SSA/Ro maternos, y ha sido demostrada la elevada mortalidad asociada con el lupus neonatal cardíaco¹⁴. En un estudio no aleatorizado multicéntrico con 20 fetos expuestos a anticuerpos maternos de lupus¹⁵ se observó que el tratamiento intravenoso con gamma globulina y esteroides, mejoró potencialmente los resultados para estos niños, con una supervivencia mayor a la esperada. Sin embargo, un estudio prospectivo con 165 fetos expuestos a anticuerpos anti-Ro/La encontró que la prolongación aurículo-ventricular fetal no predijo la progresión a bloqueo cardíaco, de modo que se cuestionó la conducta diagnóstico-terapéutica basada en la estrategia de identificación y tratamiento de prolongación aurículo-ventricular fetal¹⁶.

El tratamiento farmacológico transplacentario para taquiarritmias del feto fue revisado en un estudio multicéntrico¹⁷, el cual mostró la superioridad de la flecainida y la digoxina. Sin embargo, al no ser aleatorio, este estudio no fue lo suficientemente sólido.

MIOCARDIOPATÍA, INSUFICIENCIA CARDÍACA Y TRASPLANTE

El cribado pre-participativo para la miocardiopatía está ganando más atención en los medios de comunicación. Un estudio italiano sobre el valor del cribado preparticipativo de los niños mediante ECG, demostró que la persistencia, pasada la pubertad, de la inversión de la onda T, se asoció con un mayor riesgo de miocardiopatía¹⁸.

Saber cuándo proponer el trasplante en los pacien-

tes ambulatorios sigue siendo un tema difícil. Se realizó una revisión del riesgo de muerte y el trasplante en la miocardiopatía dilatada pediátrica utilizando una base de datos multicéntrica. Los autores mostraron que un aumento del diámetro diastólico final del ventrículo izquierdo se asociaba con un mayor riesgo de trasplante pero no con la muerte¹⁹. Un trabajo realizado por Giardini et al.20 ha demostrado que las pruebas metabólicas de esfuerzo son útiles para predecir el pronóstico, pero los porcentajes de los valores predichos son mejores que los números absolutos. Generalmente el trasplante por cardiopatía congénita se considera un gran riesgo, a pesar de que en una pequeña serie de trasplante en adultos con enfermedades congénitas en el Reino Unido se muestran resultados alentadores²¹. Una revisión de una base de datos norteamericana de más de mil trasplantes por cardiopatías congénitas en adultos, confirmó la alta mortalidad a los 30 días, pero también una mejor supervivencia tardía después del trasplante. A pesar de que los trasplantes de corazón siguen siendo un recurso valioso, en la actualidad los resultados justifican la continua expansión de los programas de trasplante por cardiopatías congénitas en adultos²².

Una base de datos internacional mostró que la oxigenación extracorpórea por membrana no parece ser un apoyo circulatorio fiable a largo plazo en niños que esperan un trasplante cardíaco²³. Afortunadamente, existen otras opciones de apoyo, y Stiller *et al.*²⁴ proporcionan una visión general útil del apoyo cardiovascular mecánico en lactantes y niños.

EL VENTRÍCULO ÚNICO

Los pacientes con un ventrículo único siguen siendo un gran foco para los recursos de la cardiopatía congénita. Existen muchas controversias sobre el tratamiento de estos pacientes. Los inhibidores de la enzima conversora de angiotensina (ECA) se utilizan a menudo en esta compleja circulación, pero los efectos de su vasodilatación no están claros. El trabajo en niños con derivaciones cavopulmonares bidireccionales demostró que el enalaprilato no aumentó el gasto cardíaco total, sino que redistribuyó el flujo a la parte inferior del cuerpo, con la consecuente disminución en la saturación arterial de oxígeno²⁵. Los autores concluyeron que es difícil aumentar el gasto cardíaco en estos pacientes, y los inhibidores de la ECA se deben utilizar con precaución en pacientes con saturaciones aórticas limítrofes. Este trabajo se adapta bastante bien a los resultados de un ensayo aleatorizado y multicéntrico, que encontró que la administración de enalapril a lactantes con ventrículo único en el primer año de vida no mejoró el crecimiento somático, la función ventricular o la gravedad de la insuficiencia cardíaca²⁶. En un análisis posterior de su población de estudio, los autores también demostraron que el genotipo de renina aldosterona influye en la remodelación ventricular en niños con ventrículo único²⁷.

Los resultados tardíos después del procedimiento de Fontan siguen siendo una preocupación. En algunos pacientes, con el tiempo, se produce una insuficiencia circulatoria progresiva, cuya fisiopatología subyacente no se entiende completamente. En una revisión de la evidencia actual sobre alteraciones en la vasculatura pulmonar en pacientes sometidos al procedimiento de Fontan, se discutió el potencial de los tratamientos aprobados para la hipertensión arterial pulmonar que pueden proporcionar beneficios²⁸. La enfermedad hepática se reconoce ahora como un problema grave después del procedimiento de Fontan. A menudo se observaron disfunción hepática y cambios cirróticos en una serie de pacientes sometidos al procedimiento de Fontan²⁹. Las complicaciones hepáticas se correlacionaron con la duración de la circulación de Fontan. Los autores concluyeron que estos pacientes necesitan evaluaciones regulares de la función hepática, aunque algunos marcadores incruentos de fibrosis hepática pueden ser utilizados de forma efectiva. En una reciente reunión de consenso sobre este problema, el grupo recomendó un protocolo de estudio prospectivo sobre la evaluación de la función hepática 10 años después de un procedimiento de Fontan³⁰.

El uso de la anticoagulación después del procedimiento de Fontan sigue siendo controvertido. Se informó sobre un estudio multicéntrico y aleatorizado de heparina o warfarina después del procedimiento de Fontan³¹. Un total de 111 pacientes fueron aleatorizados. Hubo una incidencia de trombosis muy similar en ambos grupos: 12/57 con aspirina y 13/54 en el grupo de warfarina. Aunque no hubo diferencias, los autores concluyeron que como la tasa de trombosis fue tan alta, deben considerarse enfoques alternativos.

Otra controversia sobre el procedimiento de Fontan incluye el uso de fenestraciones, ya que aunque pueden mejorar los resultados quirúrgicos inmediatos, hay una preocupación acerca de las complicaciones tardías. Los resultados finales para la fenestración de

la vía venosa sistémica en el momento del procedimiento de Fontan se registraron en un estudio multicéntrico retrospectivo no aleatorizado³². De las 361 fenestraciones, hubo pocos resultados perjudiciales tardíos, con una media de 8 ± 3 años después de la cirugía. Las saturaciones fueron de 89 % vs. 95 % en el grupo fenestrado.

IMAGENOLOGÍA

La ecocardiografía tridimensional se está desarrollando rápidamente y su aplicación a la cardiopatía congénita puede ser uno de sus usos principales en los próximos años³³. Otros métodos de imagenología emergentes incluyen una nueva técnica de ultrasonido de alta resolución³⁴. Los autores describieron la técnica en adolescentes después de la reparación de la coartación en la infancia temprana, y demostraron un aumento del grosor preductal de la íntima y la media arterial, la masa del ventrículo izquierdo y de la rigidez en la aorta ascendente en adolescentes. Las anomalías cardiovasculares más pronunciadas después de la implantación de un *stent* en la coartación parecían estar relacionadas con la mayor edad del paciente en el momento de la intervención.

CIRUGÍA

El registro holandés *Corvitia* Congénita (*CONCOR*, por sus siglas en inglés), para adultos con cardiopatía congénita, fue revisado para observar los resultados de la cirugía en adultos predominantemente jóvenes con esta afección³⁵. Una quinta parte requirió cirugía cardiovascular durante un período de 15 años y en el 40 % la cirugía fue una reintervención. Los hombres con cardiopatía congénita tenían, con respecto a las mujeres, una mayor probabilidad de someterse a una cirugía en la edad adulta y una supervivencia consistentemente peor a largo plazo después de las reintervenciones.

Se informaron resultados funcionales detallados a los 8,1 años (rango 2,0-14,0) después de la operación de Ross en 45 sujetos (edad 24,6 años, rango de 16,9-52,2 años), que se sometieron a este procedimiento entre 1994 y 2006. Se utilizaron la resonancia magnética cardiovascular, la ecocardiografía y las pruebas de esfuerzo cardiopulmonares³⁶. Los autores demostraron una leve disfunción del auto y el homoinjerto en la mayoría de los pacientes después del procedimiento de Ross, asociados con buena función ventricular y capacidad de ejercicio. La supervivencia tardía se com-

paró en un estudio de 918 pacientes sometidos al procedimiento de Ross y 406 pacientes con válvulas mecánicas entre 18-60 años de edad, que sobrevivieron a un procedimiento electivo (1994-2008). Con el uso del propensity score matching, la supervivencia tardía se comparó entre los dos grupos³⁷. En pacientes comparables, no hubo diferencia en cuanto a la supervivencia tardía en la primera década postoperatoria entre el procedimiento de Ross y el implante de una válvula aórtica mecánica con óptimo auto-control de la anticoagulación. Los autores demostraron que la supervivencia en estos pacientes adultos jóvenes seleccionados fue excelente, tal vez como resultado del auto-control altamente especializado de la anticoagulación, mejor momento para la cirugía y una selección mejorada de los pacientes en los últimos años. A pesar del advenimiento del procedimiento de Ross, la cirugía valvular aórtica en niños sigue siendo un tema complejo y difícil, y una visión general útil fue proporcionada por d'Udekem³⁸.

En un informe sobre el riesgo que la cirugía representa para el neurodesarrollo³⁹, se revisaron las evaluaciones neuropsicológicas y estructurales cerebrales por imagenología en niños de 16 años con transposición de grandes vasos que se sometieron a la cirugía de intercambio arterial en la infancia. Los niños fueron aleatorizados a una derivación cardiopulmonar continua de bajo flujo o paro circulatorio total, pero se encontraron pocas diferencias significativas entre el grupo de tratamiento. Sin embargo, los adolescentes con transposición de grandes vasos que han sido sometidos a la cirugía de intercambio arterial tienen un mayor riesgo con respecto a su neurodesarrollo. Los autores consideran que es provechoso que los niños con cardiopatías congénitas sean vigilados permanentemente para detectar las dificultades que aparezcan.

TETRALOGÍA DE FALLOT

Un estudio que utiliza datos de *speckle tracking* en pacientes con tetralogía de Fallot corregida demostró que la deformación del tracto de salida del ventrículo derecho se retrasa, causando una reducción en el tiempo de retardo ventricular derecho, lo cual está significativamente asociado a un deterioro de la función ventricular derecha⁴⁰. La insuficiencia de la cavidad cardíaca derecha tardía es un problema grave en la tetralogía y en la transposición corregida congénitamente. En un estudio con 40 de estos pacientes,

mediante ecocardiografía con contraste, se encontró que la densidad microvascular miocárdica de la pared septal del ventrículo derecho en pacientes con hipertrofia, debido a la presión y/o sobrecarga de volumen, se reduce. Los autores consideran que esto puede estar relacionado con una disminución de la reserva de perfusión miocárdica y a una alteración de la función sistólica ventricular derecha⁴¹. Un informe del impacto de la fisiología restrictiva sobre la función del ventrículo derecho después de la corrección de la tetralogía, encontró que la rigidez diastólica del ventrículo derecho se incrementó⁴². Sin embargo, la respuesta lusitrópica a agentes adrenérgicos β fue anormal, independientemente de la fisiología restrictiva. En una investigación de 29 niños asintomáticos con tetralogía corregida⁴³, a pesar de una moderada dilatación ventricular derecha y bloqueo de rama derecha en comparación con los controles, los autores demostraron la ausencia de asincronía ventricular derecha e izquierda en reposo, pero detectaron asincronía mecánica, inducida por el ejercicio. Esto no estuvo relacionado con la duración del complejo QRS, los volúmenes y función ventriculares, o el consumo máximo de oxígeno. En un estudio de tetralogía corregida en adultos, la disfunción ventricular longitudinal izquierda se asoció con un mayor riesgo de muerte súbita cardíaca o arritmias potencialmente mortales⁴⁴. Los autores concluyen que, en combinación con las variables ecocardiográficas de las cavidades derechas del corazón, estas medidas proporcionaron resultados con información importante para estimar el pronóstico.

HIPERTENSIÓN PULMONAR

Un estudio prospectivo abierto con sildenafilo en 84 pacientes arrojó más evidencias sobre los beneficios de los vasodilatadores pulmonares en el síndrome de Eisenmenger⁴⁵. Doce meses de tratamiento con sildenafilo oral fue bien tolerado y pareció mejorar la capacidad de ejercicio, la saturación arterial sistémica de oxígeno y los parámetros hemodinámicos en pacientes con síndrome de Eisenmenger. Se informó sobre la importancia de la reactividad vascular pulmonar, como un predictor independiente de la evolución en 38 pacientes con Eisenmenger que recibieron bosentán⁴⁶.

Se informó acerca de una cohorte nacional única de pacientes con hipertensión pulmonar en la infancia del Reino Unido⁴⁷. Los autores demostraron, por primera

vez, que la incidencia de la hipertensión pulmonar es menor en niños que en adultos y que las características clínicas pueden ser diferentes. La mayoría de los niños se presentan con signos clínicos de enfermedad avanzada, y el estado clínico de presentación es predictivo del pronóstico. Esta experiencia de 7 años confirmó la mejora significativa en la supervivencia sobre los controles históricos. El mismo grupo también informó sobre un nuevo enfoque de la TC para el pronóstico⁴⁸. Ellos encontraron que la ramificación fractal cuantifica los cambios vasculares y predice la supervivencia en la hipertensión pulmonar. La necesidad del desarrollo de medicamentos pediátricos para la hipertensión pulmonar fue destacada por Barst⁴⁹. En un estudio de pacientes con síndrome de Eisenmenger (n=181, edad 36,9 ± 12,1 años, el 31 % con síndrome de Down), en el que se midieron las concentraciones de péptido natriurético tipo B (BNP, por sus siglas en inglés), como parte de la atención clínica de rutina, se descubrió que éstas predijeron el pronóstico⁵⁰. Además, los autores especularon que los tratamientos dirigidos a la enfermedad pueden ayudar a reducir las concentraciones de BNP en esta población, mientras que pacientes sin tratamiento previo tienen concentraciones de BNP estáticas o en aumento. Este tema se trata con más detalle en un editorial escrito por D'Alto⁵¹.

TRASTORNOS ARTERIALES EN LAS CARDIOPATÍAS CONGÉNITAS

Mientras que las anomalías de la pared aórtica han sido descritas en los trastornos hereditarios del tejido conectivo, como el síndrome de Marfan y la enfermedad de la válvula aórtica bicúspide^{52,53}, informes recientes indican la participación aórtica similar en cardiopatías congénitas clásicas, como la coartación de la aorta, la tetralogía de Fallot y la transposición de grandes vasos; la resonancia magnética (RM) es clave en la definición del problema⁵⁴. La dilatación arterial pulmonar se observa con anomalías de la válvula pulmonar y enfermedades del tejido conectivo, pero también se produce en asociación con la válvula aórtica bicúspide, en ausencia de una anomalía de la válvula pulmonar, lo que sugiere una enfermedad primaria de la pared del vaso que predispone a la dilatación arterial⁵⁵.

INTERVENCIÓN POR CATETER

Con el aumento del uso de procedimientos cardioló-

gicos intervencionistas en los jóvenes es claramente importante tener en cuenta la exposición a la radiación. Datos provenientes de Italia alertan que los niños con cardiopatías congénitas son expuestos a una significativa dosis acumulativa de radiación⁵⁶. Cálculos indirectos sobre riesgo de cáncer y estudios directos de ADN mostraron que los niños con cardiopatías congénitas están expuestos a una dosis de radiación significativa, y enfatizaron en la necesidad de la optimización estricta de la dosis de radiación en niños. El editorial de Hoffmann y Bremerich profundizó en los riesgos⁵⁷.

Los nuevos avances en las técnicas de cateterización continúan. Un ensayo prospectivo, aleatorizado, multicéntrico, de investigación sobre exención de dispositivo en los Estados Unidos comparó el uso de globos de corte con globos de alta presión en el tratamiento de la estenosis de la arteria pulmonar. Los autores encontraron una mayor eficacia para el globo de corte y un perfil de seguridad similar⁵⁸. Datos del Reino Unido sobre más de 100 procedimientos con stent por coartación en un solo centro⁵⁹, demostraron que este procedimiento es eficaz para la coartación aórtica y la re-coartación, con índices de complicaciones entre bajo e intermedio. Los aneurismas después del procedimiento fueron poco frecuentes y no se observaron fracturas de los stents de nueva generación. El método óptimo para el seguimiento de estos pacientes no está claro, y tanto la TC como la RM se consideran útiles⁶⁰. Un estudio observacional multicéntrico de EE.UU. informó datos de 350 niños con coartación nativa > 10 kg⁶¹. Hubo 217 stents, 61 angioplastias con globo y 72 procedimientos quirúrgicos. La colocación de stents y la cirugía resultaron mejores que las angioplastias con globo en cuanto a la reducción del gradiente de presión arterial desde las extremidades superiores a las inferiores en un seguimiento a corto plazo, y tuvieron también mejores resultados integrados de la imagen del arco aórtico. Los pacientes con stent tuvieron la menor estancia hospitalaria y la menor tasa de complicaciones, aunque eran más propensos a requerir una intervención planificada. Los autores advirtieron sobre la interpretación de los resultados, ya que el estudio no fue aleatorio. La angioplastia con globo para la obstrucción del arco aórtico suele ser necesaria después del procedimiento de Norwood, y los resultados de un estudio retrospectivo⁶² informaron que sólo el 58 % de los que tienen una primera angioplastia con globo no fueron sometidos a reintervención del arco a los 5 años, con el mayor riesgo de reintervención en aquellos con menos de 3 meses de la intervención inicial y en aquellos con resultados iniciales menos exitosos.

Roberts et al. 63 informaron sobre una experiencia multicéntrica de sustitución exitosa de la válvula tricúspide percutánea mediante el uso de la válvula Melody en 15 pacientes. A todos se les había colocado una prótesis biológica o conducto, y habían desarrollado una estenosis o regurgitación significativa. Se informaron resultados alentadores con la válvula transcatéter Edwards SAPIEN para la insuficiencia del conducto en posición pulmonar en 36 pacientes de cuatro centros⁶⁴. Imágenes útiles de este dispositivo fueron publicados por Lauten et al. 65. Se informó sobre los resultados de la pre-implantación de stent 1 año después de utilizar la válvula Melody en posición pulmonar⁶⁶, en 65 pacientes. Los resultados hemodinámicos iniciales se mantuvieron al año, pero no hubo evidencias de una posterior remodelación funcional positiva después de los efectos agudos inmediatos.

Las estrategias que rodean la estimulación cardíaca en lactantes y niños son a menudo objeto de debate. Un reciente estudio multicéntrico demostró que la estimulación ventricular izquierda se asoció con una mejor función sistólica que la estimulación ventricular derecha⁶⁷, y una revisión útil puso los problemas de la estimulación en niños en su contexto⁶⁸.

CARDIOPATÍAS CONGÉNITAS DEL ADULTO

La creciente población de adultos con cardiopatías congénitas se refleja en el creciente número de publicaciones en este campo. La cifra ascendente de hospitalizaciones de adultos con cardiopatía congénita fue descrita utilizando un registro nacional holandés⁶⁹. Durante 28.990 pacientes/años, 2.908 pacientes (50%) fueron ingresados en el hospital. La edad media al ingreso fue de 39 años (rango 18-86). Las tasas de ingreso fueron por lo menos dos veces más altas que en la población general, y esto se acentuó más en los grupos de mayor edad. Con el envejecimiento de esta población, los autores abogan por la preparación oportuna de los recursos sanitarios.

Una investigación realizada en Toronto describió la debilidad de los músculos respiratorios y óseos en adultos con cardiopatía congénita, la cual se asemeja a la observada en los adultos mayores con insuficiencia cardíaca avanzada⁷⁰. La importancia de este cambio de

enfoque en los mecanismos de tolerancia reducida al ejercicio en las cardiopatías congénitas se discute con más detalle en un editorial de Giardini⁷¹. Los biomarcadores también pueden tener un papel importante en la evaluación de estos pacientes. Se investigó la relación de la función sistémica del ventrículo derecho por ECG y los niveles de NT-proBNP en adultos mucho después del procedimiento de Senning o Mustard⁷². Se demostró que los niveles circulantes de NT-proBNP y varios parámetros del ECG de superficie constituyen marcadores secundarios de la función sistémica del ventrículo derecho, y proporcionaron información adicional sobre el estado de la insuficiencia cardíaca. Aunque los pediatras están muy conscientes de la asociación entre el síndrome de Down y las cardiopatías congénitas, una información de los Países Bajos constató que el 17 % de los pacientes con síndrome de Down, que viven en centros residenciales, presentaban cardiopatías congénitas no diagnosticadas. En la primera etapa del estudio se incluyeron 31 centros y 1.158 pacientes⁷³. Los autores recomiendan el examen cardíaco en pacientes mayores con síndrome de Down, para quienes están disponibles nuevas opciones terapéuticas, y para prevenir complicaciones cardíacas en la vejez.

El ictus fue una causa importante de morbilidad en la cardiopatía congénita del adulto, según un análisis retrospectivo de bases de datos Europeas y Canadienses⁷⁴, con un total de 23.153 pacientes de 16-91 años (edad media 36,4). Entre ellos, 458 pacientes (2,0 %) presentaron uno o más accidentes cerebrovasculares. La prevalencia más alta fue en las lesiones cianóticas 50/215 (23,3 %).

Un meta-análisis y una revisión sistemática de los cierres de comunicación interauricular identificaron 26 estudios, que incluyeron 1841 pacientes que fueron sometidos a cierre quirúrgico y 945, a cierre percutáneo⁷⁵. El meta-análisis que utilizó un modelo de efectos aleatorios demostró una reducción en la prevalencia de taquiarritmias auriculares tras el cierre de la comunicación interauricular [OR=0,66 (IC del 95 %: 0,57 a 0,77)]. Este efecto fue demostrado después del cierre, tanto percutáneo como quirúrgico. El seguimiento inmediato (<30 días) y a mediano plazo (30 días – 5 años) también demostraron una reducción en la prevalencia de taquiarritmias auriculares.

Inuzuka *et al.* revisaron datos de 1.375 pacientes adultos consecutivos con cardiopatía congénita (edad 33 ± 13 años), que se sometieron a la prueba de es-

fuerzo cardiopulmonar en un solo centro, durante un período de 10 años⁷⁶. Ellos mostraron que la prueba de esfuerzo cardiopulmonar proporciona información pronóstica importante en pacientes adultos con cardiopatía congénita. Sin embargo, consideraron que el pronóstico debe ser abordado de manera diferente, dependiendo de la presencia de cianosis, el uso de medicamentos bradicardizantes y el nivel de ejercicio alcanzado.

EMBARAZO Y CARDIOPATÍAS CONGÉNITAS

Las enfermedades del corazón se han convertido en el principal factor de mortalidad materna durante el embarazo en los países desarrollados. El número cada vez mayor de mujeres con cardiopatía congénita que sobrevive hasta la edad adulta, ha hecho de la atención durante el embarazo en este grupo, una importante área de la Cardiología obstétrica. Se ha hecho énfasis en la atención necesaria para este grupo vulnerable⁷⁷. Se investigaron los resultados de 405 embarazos de mujeres con cardiopatía congénita, así como las complicaciones cardíacas tardías⁷⁸. Aunque los sucesos adversos durante el embarazo son bien conocidos, el problema de las complicaciones cardíacas tardías⁷⁸ después del embarazo, es menos conocido. Los autores encontraron que las características maternas antes del embarazo pueden ayudar a identificar a las mujeres en mayor riesgo de complicaciones cardíacas tardías. Los incidentes cardíacos adversos durante el embarazo también fueron importantes y están asociados a un mayor riesgo de complicaciones cardíacas tardías. Opotowsky et al. utilizaron el registro nacional de ingresos hospitalarios de los EE.UU. para evaluar los partos anuales de las mujeres con cardiopatía congénita⁷⁹. Estos aumentaron un 34,9 % entre 1998 y 2007, en comparación con un aumento del 21,3 % en la población general. Las mujeres con cardiopatía congénita tenían más probabilidades de sufrir un suceso cardiovascular (4.042/100.000 vs. 278/100.000 partos), la arritmia fue el suceso cardiovascular más común. La muerte ocurrió en 150/ 100.000 pacientes con cardiopatías congénitas en comparación con 8,2/100.000 pacientes que no la padecían. La enfermedad compleja se asoció con una mayor probabilidad de sufrir un suceso cardiovascular adverso respecto a la cardiopatía congénita simple (8.158/100.000 vs. 3.166/100.000, OR multivariable = 2,0, IC del 95 %: 1,4 a 3,0).

Lui et al. investigaron la respuesta de la frecuencia

cardíaca durante el ejercicio y los resultados del embarazo en mujeres con cardiopatía congénita⁸⁰. La frecuencia cardíaca máxima, la frecuencia cardíaca máxima programada por la edad y el índice cronotrópico, se asociaron con una complicación cardíaca. Los incidentes neonatales ocurrieron en el 20 %. El consumo máximo de oxígeno no se asoció con un resultado adverso del embarazo. Los autores concluyeron que una respuesta cronotrópica anormal se correlaciona con resultados adversos del embarazo en mujeres con cardiopatía congénita, y debe ser considerada en el perfeccionamiento de esquemas de estratificación del riesgo.

CARGA MUNDIAL DE LA ENFERMEDAD CARDIOVASCULAR

La cardiopatía congénita en los países en vías de desarrollo es claramente importante, ya que la gran mayoría de los pacientes nacen en estos países. Un hallazgo preocupante en Nueva Delhi⁸¹ es que el género femenino es un factor determinante para la no realización de la cirugía cardíaca pediátrica. El estudio prospectivo de 405 casos incluyó entrevistas a profundidad. Se llegó a la conclusión de que factores sociales arraigados subyacen a este prejuicio de género. Una visión interesante de este problema la ofrecen Daljit Singh y sus colegas⁸². En un país desarrollado (Taiwán), una investigación de 289 pacientes adultos con cardiopatía congénita encontró que el sexo femenino se asoció con una mala calidad de vida física y psicológica83. Los denominadores comunes de calidad de vida fueron principalmente los rasgos de la personalidad, los trastornos psicológicos y el apoyo familiar; pero, curiosamente, no la gravedad de la enfermedad.

La persistencia del conducto arterioso es una lesión fácil de tratar, pero si no se trata, los conductos de gran tamaño pueden llevar a la enfermedad vascular pulmonar. Una presentación tardía en los países en vías de desarrollo significa que muchos pacientes presenten un nivel de hipertensión pulmonar que podría hacer peligrosa una intervención. Los resultados de un estudio realizado en México⁸⁴ son importantes y alentadores. Ellos informaron sobre 168 pacientes que solo presentaban persistencia del conducto arterioso (PCA) y presión sistólica de la arteria pulmonar \geq 50 mmHg. La edad media fue de 10,3 \pm 14,3 años (media 3,9), el diámetro del PCA fue de 6,4 \pm 2,9 mm (media 5,9), la presión sistólica de la arteria pulmonar fue de

63,5 \pm 16,2 mmHg (media 60). La tasa de éxito general fue de 98,2 %. El seguimiento de 145 (86,3 %) casos durante 37,1 \pm 24 meses (media 34,1), mostró una mayor disminución de la presión pulmonar a 30,1 \pm 7,7 mmHg (p <0,0001). Los autores han demostrado que en casos seleccionados el tratamiento percutáneo del PCA hipertensivo es seguro y eficaz, y que las presiones pulmonares disminuyen inmediatamente y continúan haciéndolo con el tiempo.

IMÁGENES DE LAS CARDIOPATÍAS CONGÉNITAS

Quizás uno de los aspectos más atractivos de la cardiopatía congénita es la estética de las anomalías. Esto se presta a la imagenología, y las imágenes de las cardíacas congénitas animan las páginas de muchas de las principales revistas de Cardiología. Por lo tanto, parece apropiado poner fin a este Anuario haciendo referencia a algunas de las imágenes más impresionantes que reflejan las áreas clave de las cardiopatías congénitas que se discutieron anteriormente, y que incluyen el intervencionismo⁸⁵⁻⁹¹, enfermedades fetales y neonatales⁹²⁻⁹⁵, insuficiencia cardíaca con soporte mecánico⁹⁶, cardiopatías congénitas en adolescentes y adultos^{97,98}, imagenología avanzada con RM y TC^{99,100}, y morfología inusual¹⁰¹⁻¹⁰⁷; todo lo cual bien vale la pena mirar para amenizar una noche mientras nos ponemos al día con las revistas de Cardiología.

Colaboradores: MB y ND realizaron la revisión de la literatura; MB escribió el primer borrador del manuscrito, que fue revisado y aprobado por ambos autores.

Conflicto de intereses: Ninguno.

Procedencia y revisión por pares

En Heart: Por encargo, revisado por pares internamente.

En CorSalud: Por invitación de la *ESC Editors' Network* (Red de Editores de la Sociedad Europea de Cardiología). Sin revisión.

REFERENCIAS BIBLIOGRÁFICAS

- Dolk H, Loane M, Garne E; European Surveillance of Congenital Anomalies (EUROCAT) Working Group. Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005. Circulation 2011; 123:841-9.
- 2. Van der Linde D, Konings EE, Slager MA, et *al.* Birth prevalence of congenital heart disease worldwide:

- a systematic review and meta-analysis. J Am Coll Cardiol 2011;58:2241-7.
- 3. Tararbit K, Houyel L, Bonnet D, et al. Risk of congenital heart defects associated with assisted reproductive technologies: a population-based evaluation. Eur Heart J 2011;32:500-8.
- 4. Van Engelen K, Topf A, Keavney BD, et al. 22q11.2 Deletion Syndrome is under- recognised in adult patients with tetralogy of Fallot and pulmonary atresia. Heart 2010;96:621-4.
- 5. Griffin HR, Topf A, Glen E, et al. Systematic survey of variants in TBX1 in non-syndromic tetralogy of Fallot identifies a novel 57 base pair deletion that reduces transcriptional activity but finds no evidence for association with common variants. Heart 2010;96:1651-5.
- 6. Caleshu C, Day S, Rehm HL, *et al.* Use and interpretation of genetic tests in cardiovascular genetics. Heart 2010;96:1669-75.
- 7. De Luca A, Sarkozy A, Consoli F, et al. Familial transposition of the great arteries caused by multiple mutations in laterality genes. Heart 2010;96:673-7.
- 8. Keavney B. Left, right: a step forward in understanding transposition of the great arteries. Heart 2010;96:653-5.
- Zhao JY, Yang XY, Gong XH, et al. Functional variant in methionine synthase reductase intron-1 significantly increases the risk of congenital heart disease in the Han Chinese population. Circulation 2012; 125:482-90.
- 10.Marek J, Tomek V, Skovranek J, et al. Prenatal ultrasound screening of congenital heart disease in an unselected national population: a 21-year experience. Heart 2011;97:124-30.
- 11.Stressig R, Fimmers R, Eising K, et al. Preferential streaming of the ductus venosus and inferior caval vein towards the right heart is associated with left heart underdevelopment in human fetuses with left-sided diaphragmatic hernia. Heart 2010;96: 1564-8.
- 12. Eliasson H, Sonesson SE, Sharland G, et al; Fetal working group of the European association of pediatric cardiology. Isolated atrioventricular block in the fetus: a retrospective, multinational, multicenter study of 175 patients. Circulation 2011;124: 1919-26.
- 13.Baruteau AE, Fouchard S, Behaghel A, et al. Characteristics and long-term outcome of nonimmune isolated atrioventricular block diagnosed

- in utero or early childhood: a multicentre study. Eur Heart J 2012;33:622-9.
- 14.Izmirly PM, Saxena A, Kim MY, et al. Maternal and fetal factors associated with mortality and morbidity in a multi-racial/ethnic registry of anti-SSA/Ro-associated cardiac neonatal lupus. Circulation 2011;124:1927-35.
- 15.Trucco SM, Jaeggi E, Cuneo B, et al. Use of intravenous gamma globulin and corticosteroids in the treatment of maternal autoantibody-mediated cardiomyopathy. J Am Coll Cardiol 2011;57:715-23.
- 16.Jaeggi ET, Silverman ED, Laskin C, et al. Prolongation of the atrioventricular conduction in fetuses exposed to maternal anti-Ro/SSA and anti-La/SSB antibodies did not predict progressive heart block. A prospective observational study on the effects of maternal antibodies on 165 fetuses. J Am Coll Cardiol 2011;57:1487-92.
- 17. Jaeggi ET, Carvalho JS, De Groot E, et al. Comparison of transplacental treatment of fetal supraventricular tachyarrhythmias with digoxin, flecainide, and sotalol: results of a nonrandomized multicenter study. Circulation 2011;124:1747-54.
- 18.Migliore F, Zorzi A, Michieli P, et al. Prevalence of cardiomyopathy in Italian asymptomatic children with electrocardiographic T-wave inversion at preparticipation screening. Circulation 2012;125:529-38.
- 19.Alvarez JA, Orav EJ, Wilkinson JD, et al; Pediatric cardiomyopathy registry Investigators. Competing risks for death and cardiac transplantation in children with dilated cardiomyopathy: results from the pediatric cardiomyopathy registry. Circulation 2011;124:814-23.
- 20. Giardini A, Fenton M, Andrews RE, *et al.* Peak oxygen uptake correlates with survival without clinical deterioration in ambulatory children with dilated cardiomyopathy. Circulation 2011;124:1713-18.
- 21.Irving C, Parry G, O'Sullivan J, *et al.* Cardiac transplantation in adults with congenital heart disease. Heart 2010;96:1217-22.
- 22.Burch M. Is heart transplantation for adult congenital heart disease an appropriate use of a scarce resource? Heart 2010;96:1172-3.
- 23.Almond CS, Singh TP, Gauvreau K, et al. Extracorporeal membrane oxygenation for bridge to heart transplantation among children in the United States: analysis of data from the organ procurement and transplant network and extracorporeal

- life support organization registry. Circulation 2011; 123:2975-84.
- 24.Stiller B, Benk C, Schlensak C. Congenital heart disease: mechanical cardiovascular support in infants and children. Heart 2011;97:596-602.
- 25.Lee KJ, Yoo SJ, Holtby H, *et al.* Acute effects of the ACE inhibitor enalaprilat on the pulmonary, cerebral and systemic blood flow and resistance after the bidirectional cavopulmonary connection. Heart 2011;97:1343e8.
- 26. Williams RV, Zak V, Ravishankar C, et al; Pediatric Heart Network Investigators. Factors affecting growth in infants with single ventricle physiology: a report from the Pediatric Heart Network Infant Single Ventricle Trial. J Pediatr 2011;159:1017-22.e2.
- 27. Mital S, Chung WK, Colan SD, *et al*; Pediatric Heart Network Investigators. Renin-angiotensin-aldosterone genotype influences ventricular remodeling in infants with single ventricle. Circulation 2011; 123:2353-62.
- 28.Beghetti M. Fontan and the pulmonary circulation: a potential role for new pulmonary hypertension therapies. Heart 2010;96:911-16.
- 29.Baek JS, Bae EJ, Ko JS, *et al.* Late hepatic complications after Fontan operation; non-invasive markers of hepatic fibrosis and risk factors. Heart 2010;96: 1750.
- 30.Rychik J, Veldtman G, Rand E, et al. The precarious state of the liver after a fontan operation: summary of a multidisciplinary symposium. Pediatr Cardiol. Published Online First: 26 April 2012. doi: 10.1007/s00246-012-0315-7.
- 31. Monagle P, Cochrane A, Roberts R, et al. A multicenter, randomized trial comparing heparin/warfarin and acetylsalicylic acid as primary thromboprophylaxis for 2 years after the Fontan procedure in children. Fontan Anticoagulation Study Group. J Am Coll Cardiol 2011;58:645-51.
- 32.Atz AM, Travison TG, McCrindle BW, et al; Pediatric Heart Network Investigators. 62. Late status of Fontan patients with persistent surgical fenestration. J Am Coll Cardiol 2011;57:2437-43.
- 33. Vettukattil JJ. Three dimensional echocardiography in congenital heart disease. Heart 2012;98:79-88.
- 34.Sarkola T, Redington AN, Slorach C, et al. Assessment of vascular phenotype using a novel veryhigh-resolution ultrasound technique in adolescents after aortic 64. coarctation repair and/or

- stent implantation: relationship to central haemodynamics and left ventricular mass. Heart 2011;97: 1788-93.
- 35.Zomer AC, Verheugt CL, Vaartjes I, *et al.* Surgery in adults with congenital heart disease. Circulation 2011;124:2195-201.
- 36. Puranik R, Tsang VT, Broadley A, et al. Functional outcomes after the Ross (pulmonary autograft) procedure assessed with magnetic resonance imaging and cardiopulmonary exercise testing. Heart 2010;96:304-8.
- 37.Mokhles MM, Kortke H, Stierle U, et al. Survival comparison of the Ross procedure and mechanical valve replacement with optimal self-management anticoagulation therapy: propensity-matched cohort study. Circulation 2011;123:31-8.
- 38.d'Udekem Y. Aortic valve surgery in children. Heart 2011;97:1182-9.
- 39.Bellinger DC, Wypij D, Rivkin MJ, *et al.* Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: neuropsychological assessment and structural brain imaging. Circulation 2011;124:1361-9.
- 40.van der Hulst AE, Roest AA, Delgado V, et al. Relationship between temporal sequence of right ventricular deformation and right ventricular performance in patients with corrected tetralogy of Fallot. Heart 2011;97:231-6.
- 41.Rutz T, de Marchi SF, Schwerzmann M, et al. Right ventricular absolute myocardial blood flow in complex congenital heart disease. Heart 2010;96:1056-62.
- 42.Apitz C, Latus H, Binder W, et al. Impact of restrictive physiology on intrinsic diastolic right ventricular function and lusitropy in children and adolescents after repair of tetralogy of Fallot. Heart 2010;96:1837-41.
- 43.Roche SL, Grosse-Wortmann L, Redington AN, et al. Exercise induces biventricular mechanical dyssynchrony in children with repaired tetralogy of Fallot. Heart 2010;96:2010-15.
- 44.Diller GP, Kempny A, Liodakis E, et al. Left ventricular longitudinal function predicts life-threatening ventricular arrhythmia and death in adults with repaired tetralogy of Fallot. Circulation 2012;125: 24440-6.
- 45.Zhang ZN, Jiang X, Zhang R, et al. Oral sildenafil treatment for Eisenmenger syndrome: a prospective, open-label, multicentre study. Heart 2011;97:

- 1876-81.
- 46.D'Alto M, Romeo E, Argiento P, et al. Pulmonary vasoreactivity predicts long-term outcome in patients with Eisenmenger syndrome receiving bosentan therapy. Heart 76. 2010;96:1475—9.
- 47. Moledina S, Hislop AA, Foster H, et al. Childhood idiopathic pulmonary arterial hypertension: a national cohort study. Heart 2010;96:1401-6.
- 48. Moledina S, de Bruyn A, Schievano S, *et al.* Fractal branching quantifies vascular changes and predicts survival in pulmonary hypertension: a proof of principle study. 78. Heart 2011;97:1245-9.
- 49.Barst RJ. Children deserve the same rights we do: the need for paediatric pulmonary arterial hypertension clinical drug development. Heart 2010;96: 1337-8.
- 50.Diller GP, Alonso-Gonzalez R, Kempny A, et al. B-type natriuretic peptide concentrations in contemporary Eisenmenger syndrome patients: predictive value and response to disease targeting therapy. Heart 2012;98:736-42.
- 51.D'Alto M. Brain natriuretic peptide, survival and response to targeting therapy: another piece in the complex puzzle of Eisenmenger syndrome. Heart 2012;98:681-2.
- 52.Braverman AC. Aortic involvement in patients with a bicuspid aortic valve. Heart 2011;97:506-13.
- 53.Benedetto U, Melina G, Takkenberg JJ, et al. Surgical management of aortic root disease in Marfan syndrome: a systematic review and meta-analysis. Heart 2011;97:955-8.
- 54.Grotenhuis HB, de Roos A. Structure and function of the aorta in inherited and congenital heart disease and the role of MRI. Heart 2011;97:66-74.
- 55.Kutty S, Kaul S, Danford CJ, et al. Main pulmonary artery dilation in association with congenital bicuspid aortic valve in the absence of pulmonary valve abnormality. Heart 2010;96:1756-61.
- 56.Ait-Ali L, Andreassi MG, Foffa I, et al. Cumulative patient effective dose and acute radiation-induced chromosomal DNA damage in children with congenital heart disease. Heart 2010;96:269-74.
- 57.Hoffmann A, Bremerich J. The danger of radiation exposure in the young. Heart 2010;96:251-2.
- 58.Peng LF, Lock JE, Nugent AW, et al. Comparison of conventional and cutting balloon angioplasty for congenital and postoperative pulmonary vein stenosis in infants and young children. Catheter Cardiovasc Interv 2010;75:1084-90.

- 59. Chakrabarti S, Kenny D, Morgan G, et al. Balloon expandable stent implantation for native and recurrent coarctation of the aorta—prospective computed tomography assessment of stent integrity, aneurysm formation and stenosis relief. Heart 2010;96:1212-16.
- 60.Rosenthal E, Bell A. Optimal imaging after coarctation stenting. Heart 2010;96:1169-71.
- 61. Forbes TJ, Kim DW, Du W, et al. Comparison of surgical, stent, and balloon angioplasty treatment of native coarctation of the aorta: an observational study by the CCISC (Congenital Cardiovascular Interventional Study Consortium). J Am Coll Cardiol 2011;58:2664-74.
- 62.Porras D, Brown DW, Marshall AC, et al. Factors associated with subsequent arch reintervention after initial balloon aortoplasty in patients with Norwood procedure and arch obstruction. J Am Coll Cardiol 2011;58:868-76.
- 63. Roberts PA, Boudjemline Y, Cheatham JP, et al. Percutaneous tricuspid valve replacement in congenital and acquired heart disease. J Am Coll Cardiol 2011;58:117-22.
- 64.Kenny D, Hijazi ZM, Kar S, et al. Percutaneous implantation of the Edwards SAPIEN transcatheter heart valve for conduit failure in the pulmonary position: early phase 1 results from an international multicenter clinical trial. J Am Coll Cardiol 2011; 58:2248-56.
- 65.Lauten A, Hoyme M, Figulla HR. Severe pulmonary regurgitation after tetralogy-of-Fallot repair: transcatheter treatment with the Edwards SAPIEN XT heart valve. Heart 2012;98:623-4.
- 66. Nordmeyer J, Lurz P, Khambadkone S, *et al.* Prestenting with a bare metal stent before percutaneous pulmonary valve implantation: acute and 1-year outcomes. Heart 2011;97:118-23.
- 67.van Geldorp IE, Delhaas T, Gebauer RA, et al. Impact of the permanent ventricular pacing site on left ventricular function in children: a retrospective multicentre survey. Working Group for Cardiac Dysrhythmias and Electrophysiology of the Association for European Paediatric Cardiology. Heart 2011;97:2051-5.
- 68.McLeod KA. Cardiac pacing in infants and children. Heart 2010;96:1502-8.
- 69. Verheugt CL, Uiterwaal CS, van der Velde ET, et al. The emerging burden of hospital admissions of adults with congenital heart disease. Heart 2010;

- 96:872-8.
- 70. Greutmann M, Le TL, Tobler D, et al. Generalised muscle weakness in young adults with congenital heart disease. Heart 2011;97:1164-8.
- 71. Giardini A. Generalised myopathy in young adults with congenital heart disease. Heart 2011;97:1115-16.
- 72.Plymen CM, Hughes ML, Picaut N, et al. The relationship of systemic right ventricular function to ECG parameters and NT-proBNP levels in adults with transposition of the great arteries late after Senning or Mustard surgery. Heart 2010;96:1569-73.
- 73.Vis JC, de Bruin-Bon RH, Bouma BJ, et al. Congenital heart defects are under-recognised in adult patients with Down's syndrome. Heart 2010;96:1480-
- 74.Hoffmann A, Chockalingam P, Balint OH, et al. Cerebrovascular accidents in adult patients with congenital heart disease. Heart 2010;96:1223-6.
- 75. Vecht JA, Saso S, Rao C, et al. Atrial septal defect closure is associated with a reduced prevalence of atrial tachyarrhythmia in the short to medium term: a systematic review and meta-analysis. Heart 2010;96:1789-97.
- 76.Inuzuka R, Diller GP, Borgia F, et al. Comprehensive use of cardiopulmonary exercise testing identifies adults with congenital heart disease at increased mortality risk in the medium term. Circulation 2012:125:250-9.
- 77. Kaleschke G, Baumgartner H. Pregnancy in congenital and valvular heart disease. Heart 2011;97:1803-9.
- 78.Balint OH, Siu SC, Mason J, et al. Cardiac outcomes after pregnancy in women with congenital heart disease. Heart 2010;96:1656-61.
- 79.Opotowsky AR, Siddiqi OK, D'Souza B, *et al.* Maternal cardiovascular events during childbirth among women with congenital heart disease. Heart 2012;98:145-51.
- 80.Lui GK, Silversides CK, Khairy P, et al. Heart rate response during exercise and pregnancy outcome in women with congenital heart disease. Alliance for Adult Research in Congenital Cardiology (AARCC). Circulation 2011;123:242-8.
- 81.Ramakrishnan S, Khera R, Jain S, *et al.* Gender differences in the utilisation of surgery for congenital heart disease in India. Heart 2011;97:1920-5.
- 82. Singh D, Wander GS, Singh RJ. Gender equality in

- India for children with congenital heart disease: looking for answers. Heart 2011;97:1897-8.
- 83.Chen CA, Liao SC, Wang JK, et al. Quality of life in adults with congenital heart disease: biopsychosocial determinants and sex-related differences. Heart 2011;97:38-43.
- 84.Zabal C, Garcia-Montes JA, Buendia-Hernandez A, *et al.* Percutaneous closure of hypertensive ductus arteriosus. Heart 2010;96:625-9.
- 85. Mullens W, Dubois C, De Keyser J. Images in cardiology: coronary fistula: a rare case of right heart failure. Heart 2005;91:1329.
- 86.Tzifa A, Razavi R. Test occlusion of Fontan fenestration: unique contribution of interventional MRI. Heart 2011;97:89.
- 87.MacDonald ST, Arcidiacono C, Butera G. Fenestrated Amplatzer atrial septal defect occluder in an elderly patient with restrictive left ventricular physiology. Heart 2011;97:438.
- 88.De Vlieger G, Budts W, Dubois CL. Images in cardiology: Horner syndrome after stenting of a coarctation of the aorta. Heart 2010;96:714.
- 89.Mitchell G, Loo B, Morgan-Hughes G. Atrial septal defect closure device, a three- dimensional volume render. Heart 2010;96:1222.
- 90.Bartel T, Bonaros N, Muller S. Device failure weeks to months after transcatheter closure of secundum type atrial septal defects. Heart 2010;96:1603.
- 91.Deo SV, Burkhart HM, Ammash N, et al. Successful hybrid rescue of occluded pulmonary artery in pulmonary atresia. Circulation 2011;123:2431-3.
- 92. Padalino MA, Vida VL, Bhattarai A, et al. Giant intramural left ventricular rhabdomyoma in a newborn. Circulation 2011;124:2275-7.
- 93.Battista Danzi G, Salice P, Mosca F. Double aortic arch in neonates: optimal definition by means of contrast-enhanced helical CT scan. Heart 2011;97: 950.
- 94. Nagashima M, Higaki T, Kurata A. Ectopia cordis with right and left ventricular diverticula. Heart 2010;96:12.
- 95.Sridharan S, Dedieu N, Marek J. Images in cardiology: power doppler three- dimensional visualisation of aortic arch interruption in fetal life. Heart 2010;96:15.
- 96.Arendt K, Doll S, Mohr FW. Failing mustard

- circulation with secondary pulmonary hypertension: mechanical assist device to achieve reverse pulmonary vascular remodelling for subsequent heart transplantation. Heart 2010;96:14.
- 97. Farahmand P, Redheuil A, Chauvaud S, et al. Images in cardiovascular medicine: septic pulmonary thromboemboli in an adolescent with tetralogy of Fallot. Circulation 2011;123:2164-6.
- 98.Radojevic J, Redheuil A, Iserin L. Pulmonary atresia with intact ventricular septum and diastolic liver expansion. Heart 2011;97:1813-14.
- 99.Gulati A, Gheta R, Chan CF, etal. Longitudinal follow-up of a right atrial appendage aneurysm by cardiac magnetic resonance imaging. Circulation 2011;123:2289-91.
- 100. Fukui D, Kai H, Takeuchi T, et al. Longest survivor of pulmonary atresia with ventricular septal defect: well-developed major aortopulmonary collateral arteries demonstrated by multi-detector computed tomography. Circulation 2011; 124:2155-7.
- 101. Defaye P, Kane A, Jacon P. An unusual connection of the right and left inferior pulmonary veins in the left atrium via a common ostium. Heart 2010; 96:1951.
- 102. Lee MS, Pande RL, Rao B, et al. Cerebral abscess due to persistent left superior vena cava draining into the left atrium. Circulation 2011;124: 2362-4.
- 103. Chaowu Y, Xin S, Shihua Z, et al. Complete transposition of the atrioventricular valves associated with left ventricular apical hypoplasia. Circulation 2011;124: e538-9.
- 104. Cheng ST, Lan CC. Obstructive sleep apnoea syndrome related to double aortic arch. Heart 2011;97:1456-7.
- 105. Jayan JP, Vijayalakshmi IB, Narasimhan C. Images in cardiology: a rare anomaly: 'hemitruncus'. Heart 2011;97:12.
- 106. Jang SW, Rho TH, Kim JH. Membranous interventricular septal aneurysm resulted in complete atrioventricular block. Heart 2010;96:244.
- 107. Salahuddin S, Ramakrishnan S, Bhargava B. Classic supravalvular aortic stenosis. Heart 2010;96: 1808.