Is Mental Stress Always Chaotic? An Analysis of the Adaptability of Neurovisceral Regulation Through the Complexity of Heart Rate Oscillations

Authors

  • Miguel E. Sánchez-Hechavarría 1-Facultad de Medicina. Universidad Católica de la Santísima Concepción. Chile.2-Facultad de Ciencias de la Salud. Universidad Adventista de Chile. Chillán, Chile.3-Doctorado de Psicología. Facultad de Ciencias Sociales de la Universidad de Concepción. Chile https://orcid.org/0000-0001-9461-203X

Keywords:

Stress, Sample entropy, Heart rate variability

Abstract

The biological stress model suggests that the type of adaptive response to stressors depends on the phase of the process. Some of these responses indicate reduced adaptability and decreased chaos in heart rate oscillations. This theoretical review presents experimental findings using sample entropy of heart rate oscillations across the different phases of Selye’s predominant biological stress model. Changes in sample entropy occur throughout the phases of this model, with decreases during the alarm and exhaustion phases and increases during the resistance phase. These findings highlight the potential of chaos theory and complex systems analysis to describe dimensions of physiological changes associated with the biopsychosocial-cultural process of stress.

Downloads

Download data is not yet available.

Author Biography

Miguel E. Sánchez-Hechavarría, 1-Facultad de Medicina. Universidad Católica de la Santísima Concepción. Chile.2-Facultad de Ciencias de la Salud. Universidad Adventista de Chile. Chillán, Chile.3-Doctorado de Psicología. Facultad de Ciencias Sociales de la Universidad de Concepción. Chile

Doctor of Medicine. Specialist in Normal and Pathological Physiology
1. PhD Program in Psychology. Facultad de Ciencias Sociales de la Universidad de Concepción. Chile.
2. Bio-Bio Complexity Group, Department of Clinical and Preclinical Sciences. Facultad de Medicina, Universidad Católica de la Santísima Concepción. Concepción, Chile.
3. Health Sciences Research Center. Facultad de Ciencias de la Salud. Universidad Adventista de Chile. Chillán, Chile.

References

1. Kim HG, Cheon EJ, Bai DS, Lee YH, Koo BH. Stress and heart rate variability: a meta-analysis and review of the literature. Psychiatry Investig. 2018;15(3):235-45. DOI: https://doi.org/10.30773/pi.2017.08.17

2. Chida Y, Steptoe A. Greater cardiovascular responses to laboratory mental stress are associated with poor subsequent cardiovascular risk status: a meta-analysis of prospective evidence. Hypertension. 2010;55(4):1026-32. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.109.146621

3. Sánchez-Hechavarría ME, Ghiya S, Carrazana-Escalona R, Cortina-Reyna S, Andreu-Heredia A, Acosta-Batista C, et al. Introduction of application of Gini coefficient to heart rate variability spectrum for mental stress evaluation. Arq Bras Cardiol. 2019;113(4):725-33. DOI: https://doi.org/10.5935/abc.20190177

4. Tarnopolsky M. Stress and mental disorders: neurobiological and psychosocial aspects. Rev Chil Neuropsiquiatr. 2002;40(1):8-19. DOI: https://doi.org/10.4067/S0717-92272002000100002

5. Selye H. The Stress of Life. New York: McGraw-Hill; 1956.

6. Wheaton B, Young M, Montazer S, Stuart-Lahman K. Social stress in the twenty-first century. In: Aneshensel CS, Phelan JC, Bierman A, editors. Handbook of the sociology of mental health. 2nd ed. Dordrecht: Springer; 2013. p. 299-323. DOI: https://doi.org/10.1007/978-94-007-4276-5_15

7. de Camargo B. Estrés, síndrome general de adaptación o reacción general de alarma. Rev Med Cient. 2004;17(2):23-9.

8. Rodríguez-Fernández JM, García-Acero M, Franco P. Neurobiología del estrés agudo y crónico: su efecto en el eje hipotálamo-hipófisis-adrenal y la memoria. Univ Méd. 2013;54(4):472-94.

9. American Psychological Association. Los distintos tipos de estrés [Internet]. Washington (DC): APA; 2010 [citado 2022 Jun 1]. Disponible en: https://www.apa.org/topics/stress/tipos

10. Martín JP, García-Izquierdo AL. Complejidad y psicología social de las organizaciones. Psicothema. 2007;19(2):212-7.

11. Munné F. El retorno de la complejidad y la nueva imagen del ser humano: hacia una psicología compleja. Rev Interam Psicol. 2004;38(1):23-31.

12. Hernandez E. Complejidad, nuevo paradigma en la salud. Innov Cienc. 2005;12(2):45-50.

13. Martínez-Lavín M. Caos, complejidad y cardiología. Arch Cardiol Mex. 2012;82(1):54-8. DOI: https://doi.org/10.1016/j.acmx.2011.10.004

14. Romanelli L. Teoría del caos en los sistemas biológicos. Rev Argent Cardiol. 2006;74(6):478-82.

15. Wu GQ, Arzeno NM, Shen LL, Tang DK, Zheng DA, Zhao NQ, et al. Chaotic signatures of heart rate variability and its power spectrum in health, aging and heart failure. PLoS One. 2009;4(2):e4323. DOI: https://doi.org/10.1371/journal.pone.0004323

16. Selig FA, Tonolli ER, Silva ÉVCM, Godoy MF. Heart rate variability in preterm and term neonates. Arq Bras Cardiol. 2011;96(6):443-9. DOI: https://doi.org/10.1590/S0066-782X2011005000059

17. Goldberger AL, Rigney DR, West BJ. Chaos and fractals in human physiology. Sci Am. 1990;262(2):42-9. DOI: https://doi.org/10.1038/scientificamerican0290-42

18. Pedraza-Rodríguez EM, Almira-Gómez CR, Reyna SC, Bueno-Revilla DJ, López-Galán E, Sánchez-Hechavarría ME. Modifications of the non-linear parameters of the heart rate variability related to the mental arithmetic test. Rev Cuba Investig Bioméd [Internet]. 2019 [citado 2022 Jul 3];38(1). Disponible en: http://www.revibiomedica.sld.cu/index.php/ibi/article/view/161

19. Bali A, Jaggi AS. Clinical experimental stress studies: methods and assessment. Rev Neurosci. 2015;26(5):555-79. DOI: https://doi.org/10.1515/revneuro-2015-0004

20. Pedraza-Rodríguez EM, González-Velázquez VE, Montes de Oca-Carmenaty M, González-Medina KN, Muñoz-Bustos GA, Bueno-Revilla DJ, et al. Respuesta autonómica cardiovascular al estrés mental inducido por la prueba de cálculo aritmético. Rev Cuba Investig Bioméd [Internet]. 2020 [citado 2022 Feb 1];39(4). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0864-03002020000400009

21. Billman GE. The effect of heart rate on the heart rate variability response to autonomic interventions. Front Physiol. 2013;4:222. DOI: https://doi.org/10.3389/fphys.2013.00222

22. Billman GE, Huikuri HV, Sacha J, Trimmel K. An introduction to heart rate variability: methodological considerations and clinical applications. Front Physiol. 2015;6:55. DOI: https://doi.org/10.3389/fphys.2015.00055

23. Draghici AE, Taylor JA. The physiological basis and measurement of heart rate variability in humans. J Physiol Anthropol. 2016;35(1):22. DOI: https://doi.org/10.1186/s40101-016-0113-7

24. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93(5):1043‑65. DOI: https://doi.org/10.1161/01.CIR.93.5.1043

25. Francis DP, Willson K, Georgiadou P, Wensel R, Davies LC, Coats AJS, et al. Physiological basis of fractal complexity properties of heart rate variability in man. J Physiol. 2002;542(Pt 2):619-29. DOI: https://doi.org/10.1113/jphysiol.2001.013389

26. Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng CK, et al. Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association, co-endorsed by the Asia Pacific Heart Rhythm Society. Europace. 2015;17(9):1341-53. DOI: https://doi.org/10.1093/europace/euv015

27. Tan CO, Cohen MA, Eckberg DL, Taylor JA. Fractal properties of human heart period variability: physiological and methodological implications. J Physiol. 2009;587(Pt 15):3929-41. DOI: https://doi.org/10.1113/jphysiol.2009.173229

28. Bakhchina AV, Arutyunova KR, Sozinov AA, Demidovsky AV, Alexandrov YI. Sample entropy of the heart rate reflects properties of the system organization of behaviour. Entropy (Basel). 2018;20(6):449. DOI: https://doi.org/10.3390/e20060449

29. Bornas X, Llabrés J, Noguera M, López AM, Gelabert JM, Vila I. Fear induced complexity loss in the electrocardiogram of flight phobics: a multiscale entropy analysis. Biol Psychol. 2006;73(3):272-9. DOI: https://doi.org/10.1016/j.biopsycho.2006.05.005

30. Torres-Leyva M, Hernández-García F, Lazo-Herrera LA, Ortiz-Alcolea L, Sánchez-Hechavarría ME. Dinámica no lineal de la regulación autonómica cardiovascular durante la prueba del peso sostenido en pacientes con diabetes mellitus tipo 2. Rev Colomb Cardiol. 2021;28(5):421-30. DOI: https://doi.org/10.24875/RCCAR.M21000028

31. Montirosso R, Riccardi B, Molteni E, Borgatti R, Reni G. Infant’s emotional variability associated to interactive stressful situation: a novel analysis approach with Sample Entropy and Lempel–Ziv Complexity. Infant Behav Dev. 2010;33(3):346-56. DOI: https://doi.org/10.1016/j.infbeh.2010.03.009

32. Bordoy JL, Barceló-Aguirre FX, Noguera M, López-Jiménez AM, Barceló F. ¿Caos en el electrocardiograma de estudiantes con miedo a volar? Un análisis de no linealidad. Int J Clin Health Psychol. 2005;5(2):273-84. Disponible en: https://www.redalyc.org/articulo.oa?id=33701005

33. Bolea J, Bailón R, Pueyo E. On the standardization of approximate entropy: multidimensional approximate entropy index evaluated on short-term HRV time series. Complexity. 2018;2018:4953273. DOI: https://doi.org/10.1155/2018/4953273

34. Melillo P, Bracale M, Pecchia L. Nonlinear heart rate variability features for real-life stress detection. Case study: students under stress due to university examination. Biomed Eng Online. 2011;10:96. DOI: https://doi.org/10.1186/1475-925X-10-96

35. Delgado-Bonal A, Marshak A. Approximate entropy and sample entropy: a comprehensive tutorial. Entropy (Basel). 2019;21(6):541. DOI: https://doi.org/10.3390/e21060541

36. Pham T, Lau ZJ, Chen SHA, Makowski D. Heart rate variability in psychology: a review of HRV indices and an analysis tutorial. Sensors (Basel). 2021;21(12):3998. DOI: https://doi.org/10.3390/s21123998

37. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258. DOI: https://doi.org/10.3389/fpubh.2017.00258

38. Faes L, Gómez-Extremera M, Pernice R, Carpena P, Nollo G, Porta A, et al. Comparison of methods for the assessment of nonlinearity in short-term heart rate variability under different physiopathological states. Chaos. 2019;29(12):123114. DOI: https://doi.org/10.1063/1.5121893

39. Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A. 1991;88(6):2297-301. DOI: https://doi.org/10.1073/pnas.88.6.2297

40. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):H2039-49. DOI: https://doi.org/10.1152/ajpheart.2000.278.6.H2039

41. Orellana JN, Torres BDLC. La entropía y la irreversibilidad temporal multiescala en el análisis de sistemas complejos en fisiología humana. Rev Andal Med Deporte. 2010;3(1):29-32.

42. Porta A, Gnecchi-Ruscone T, Tobaldini E, Guzzetti S, Furlan R, Montano N. Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J Appl Physiol (1985). 2007;103(4):1143-9. DOI: https://doi.org/10.1152/japplphysiol.01096.2006

43. Heffernan KS, Jae SY, Vieira VJ, Iwamoto GA, Wilund KR, Woods JA, et al. C-reactive protein and cardiac vagal activity following resistance exercise training in young African-American and white men. Am J Physiol Regul Integr Comp Physiol. 2009;296(4):R1098-105. DOI: https://doi.org/10.1152/ajpregu.91095.2008

44. González-Velázquez VE, Cobiellas-Carballo LI, Rebustillo-Escobar RM, Semanat-Gabely W, Bueno-Revilla DJ, López-Galán E, et al. Modifications of the non-linear parameters of the heart rate variability related to the systematic practice of physical exercise. Rev Cuba Investig Bioméd [Internet]. 2019 [citado 2022 Jul 3];38(1). Disponible en: http://www.revibiomedica.sld.cu/index.php/ibi/article/view/122

45. Millar PJ, Levy AS, McGowan CL, McCartney N, MacDonald MJ. Isometric handgrip training lowers blood pressure and increases heart rate complexity in medicated hypertensive patients. Scand J Med Sci Sports. 2013;23(5):620-6. DOI: https://doi.org/10.1111/sms.12015

46. Fares SA, Habib JR, Engoren MC, Badr KF, Habib RH. Effect of salt intake on beat-to-beat blood pressure nonlinear dynamics and entropy in salt-sensitive versus salt-protected rats. Physiol Rep. 2016;4(11):e12823. DOI: https://doi.org/10.14814/phy2.12823

47. Duval F, González F, Rabia H. Neurobiología del estrés. Rev Chil Neuro-Psiquiatr. 2010;48(4):307-18. DOI: https://doi.org/10.4067/S0717-92272010000400002

48. Vuksanović V, Gal V. Heart rate variability in mental stress aloud. Med Eng Phys. 2007;29(3):344-9. DOI: https://doi.org/10.1016/j.medengphy.2006.07.008

49. Castaldo R, Xu W, Melillo P, Pecchia L, Santamaria L, James C. Detection of mental stress due to oral academic examination via ultra-short-term HRV analysis. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:3805-8. DOI: https://doi.org/10.1109/EMBC.2016.7591646

50. Adjei T, Xue J, Mandic DP. The female heart: sex differences in the dynamics of ECG in response to stress. Front Physiol. 2018;9:1616. DOI: https://doi.org/10.3389/fphys.2018.01616

51. Taylor SE, Klein LC, Lewis BP, Gruenewald TL, Gurung RA, Updegraff JA. Biobehavioral responses to stress in females: tend-and-befriend, not fight-or-flight. Psychol Rev. 2000;107(3):411-29. DOI: https://doi.org/10.1037/0033-295X.107.3.411

52. Blons E, Arsac LM, Gilfriche P, McLeod H, Lespinet-Najib V, Grivel E, et al. Alterations in heart-brain interactions under mild stress during a cognitive task are reflected in entropy of heart rate dynamics. Sci Rep. 2019;9(1):18190. DOI: https://doi.org/10.1038/s41598-019-54716-0

53. Berger M, Leicht A, Slatcher A, Kraeuter AK, Ketheesan S, Larkins S, et al. Cortisol awakening response and acute stress reactivity in First Nations people. Sci Rep. 2017;7:41760. DOI: https://doi.org/10.1038/srep41760

54. Rassias AJ, Holzberger PT, Givan AL, Fahrner SL, Yeager MP. Decreased physiologic variability as a generalized response to human endotoxemia. Crit Care Med. 2005;33(3):512-9. DOI: https://doi.org/10.1097/01.CCM.0000151250.99820.4C

55. Rassias AJ, Guyre PM, Yeager MP. Hydrocortisone at stress-associated concentrations helps maintain human heart rate variability during subsequent endotoxin challenge. J Crit Care. 2011;26(6):636.e1-5. DOI: https://doi.org/10.1016/j.jcrc.2011.01.008

56. Michels N, Sioen I, Clays E, De Buyzere M, Ahrens W, Huybrechts I, et al. Children’s heart rate variability as stress indicator: association with reported stress and cortisol. Biol Psychol. 2013;94(2):433-40. DOI: https://doi.org/10.1016/j.biopsycho.2013.08.001

57. Shao S, Wang T, Wang Y, Su Y, Song C, Yao C. Research of HRV as a measure of mental workload in human and dual-arm robot interaction. Electronics. 2020;9(12):2174. DOI: https://doi.org/10.3390/electronics9122174

58. Tiwari A, Albuquerque I, Parent M, Gagnon JF, Lafond D, Tremblay S, et al. Multi-scale heart beat entropy measures for mental workload assessment of ambulant users. Entropy (Basel). 2019;21(8):783. DOI: https://doi.org/10.3390/e21080783

59. Hao T, Zheng X, Wang H, Xu K, Chen S. Linear and nonlinear analyses of heart rate variability signals under mental load. Biomed Signal Process Control. 2022;77:103758. DOI: https://doi.org/10.1016/j.bspc.2022.103758

60. Escorihuela RM, Capdevila L, Castro JR, Zaragozà MC, Maurel S, Alegre J, et al. Reduced heart rate variability predicts fatigue severity in individuals with chronic fatigue syndrome/myalgic encephalomyelitis. J Transl Med. 2020;18(1):4. DOI: https://doi.org/10.1186/s12967-019-02173-0

61. Wang F, Wang H, Fu R. Real-time ECG-based detection of fatigue driving using sample entropy. Entropy (Basel). 2018;20(3):196. DOI: https://doi.org/10.3390/e20030196

62. Chen S, Xu K, Zheng X, Li J, Fan B, Yao X, et al. Linear and nonlinear analyses of normal and fatigue heart rate variability signals for miners in high-altitude and cold areas. Comput Methods Programs Biomed. 2020;196:105667. DOI: https://doi.org/10.1016/j.cmpb.2020.105667

63. Anwer S, Li H, Umer W, Antwi-Afari MF, Mehmood I, Yu Y, et al. Identification and classification of physical fatigue in construction workers using linear and nonlinear heart rate variability measurements [Internet]. Rochester, NY: Social Science Research Network; 2022 [citado 2022 Jun 1]. Report No.: 4095189. Disponible en: https://papers.ssrn.com/abstract=4095189

64. Rodrigues D, Tran Y, Guest R, Middleton J, Craig A. Influence of neurological lesion level on heart rate variability and fatigue in adults with spinal cord injury. Spinal Cord. 2016;54(4):292-7. DOI: https://doi.org/10.1038/sc.2015.180

65. Gao R, Yan H, Duan J, Gao Y, Cao C, Li L, et al. Study on the nonfatigue and fatigue states of orchard workers based on electrocardiogram signal analysis. Sci Rep. 2022;12(1):4858. DOI: https://doi.org/10.1038/s41598-022-08765-x

66. Lin CT, Nascimben M, King JT, Wang YK. Task-related EEG and HRV entropy factors under different real-world fatigue scenarios. Neurocomputing. 2018;311:24-31. DOI: https://doi.org/10.1016/j.neucom.2018.05.054

Published

2025-01-12 — Updated on 2025-09-17

Versions

How to Cite

1.
Sánchez-Hechavarría ME. Is Mental Stress Always Chaotic? An Analysis of the Adaptability of Neurovisceral Regulation Through the Complexity of Heart Rate Oscillations. CorSalud [Internet]. 2025 Sep. 17 [cited 2025 Nov. 10];16(1):e921. Available from: https://revcorsalud.sld.cu/index.php/cors/article/view/921

Issue

Section

REVIEW ARTICLE