Advances in the knowledge of the molecular and cellular bases of congenital heart diseases. Part 1 of 2: Cardiac morphogenesis

Authors

Abstract

Congenital heart diseases are the most common congenital defect in humans. Many studies indicate that the cardiac development is tightly regulated by different cell signaling pathways and genetically controlled morphological events. The identification of new genes involved in the cardiogenesis process is very useful in order to know the molecular and cellular mechanisms by which the broad phenotypic spectrum of congenital heart disease is generated. An updated bibliographic review was carried out, with the aim of identifying the most recent advances in the knowledge of the molecular and cellular bases of congenital heart disease. This knowledge allows a more effective classification of these congenital defects and a future optimization of the individualized treatment for each patient, in addition to offering possible specific and susceptible points of intervention that would allow the prevention of some of these more frequent congenital defects in humans.

Downloads

Download data is not yet available.

Author Biography

Noel Taboada Lugo, Centro Provincial de Genética Médica de Villa Clara

Máster en Ciencias. Especialista de I y II Grado en Medicina General Integral. Especialista de I y II Grado en Genética Clínica. Profesor Auxiliar de Genética Médica. Centro Provincial de Genética Médica de Villa Clara.

References

1. Taboada Lugo N. Papel del ácido fólico, zinc y cobre en la prevención primaria de los defectos congénitos. Rev Cuban Med Gen Integr [Internet]. 2016 [citado 6 Oct 2018];32(4). Disponible en: http://www.revmgi.sld.cu/index.php/mgi/article/view/167/110

2. Andersen TA, Troelsen KL, Larsen LA. Of mice and men: Molecular genetics of congenital heart disease. Cell Mol Life Sci. 2014;71(8):1327‑52.

3. Bouma BJ, Mulder BJ. Changing landscape of congenital heart disease. Circ Res. 2017;120(6):908-22.

4. Cao Y, Wang J, Wei C, Hou Z, Li Y, Zou H, et al. Genetic variations of NKX2-5 in sporadic atrial septal defect and ventricular septal defect in Chinese Yunnan population. Gene. 2016;575(1):29‑33.

5. Postma AV, Bezzina CR, Christoffels VM. Genetics of congenital heart disease: The contribution of the noncoding regulatory genome. J Hum Genet. 2016;61(1):13-9.

6. Lalani SR, Belmont JW. Genetic basis of congenital cardiovascular malformations. Eur J Med Genet. 2014;57(8):402‑13.

7. Edwards JJ, Gelb BD. Genetics of congenital heart disease. Curr Opin Cardiol. 2016;31(3):235-41.

8. Sifrim A, Hitz MP, Wilsdon A, Breckpot J, Turki SH, Thienpont B, et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet. 2016;48(9):1060-5.

9. Pawlak M, Niescierowicz K, Winata CL. Decoding the heart through next generation sequencing approaches. Genes (Basel) [Internet]. 2018 [citado 6 Oct 2018];9(6):289. Disponible en: https://www.mdpi.com/2073-4425/9/6/289/htm

10. LaHaye S, Corsmeier D, Basu M, Bowman JL, Fitzgerald-Butt S, Zender G, et al. Utilization of whole exome sequencing to identify causative mutations in familial congenital heart disease. Circ Cardiovasc Genet. 2016;9(4):320-9.

11. Rabbani B, Tekin M, Mahdieh N. The promise of whole-exome sequencing in medical genetics. J Hum Genet. 2014;59(1):5-15.

12. Agopian AJ, Mitchell LE, Glessner J, Bhalla AD, Sewda A, Hakonarson H, et al. Genome-wide association study of maternal and inherited loci for conotruncal heart defects. PLoS One. [Internet]. 2014 [citado 9 Oct 2018];9(5):e96057. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011736/pdf/pone.0096057.pdf

13. Taboada Lugo N, Herrera Martínez M. Mecanismos epigéneticos y vía de señalización Notch en el origen de diferentes defectos congénitos. Medicentro [Internet]. 2018 [citado 9 Oct 2018];22(3):197-207. Disponible en: http://medicentro.sld.cu/index.php/medicentro/article/view/2645/2213

14. Chen H, VanBuren V. A provisional gene regulatory atlas for mouse heart development. PLoS ONE [Internet]. 2014 [citado 9 Oct 2018];9(1):e83364. Disponible en: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083364

15. Deng X, Zhou J, Li FF, Yan P, Zhao EY, Hao L, et al. Characterization of nodal/TGF-lefty signaling pathway gene variants for possible roles in congenital heart diseases. PLoS One [Internet]. 2014 [citado 9 Oct 2018];9(8):e104535. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128709/pdf/pone.0104535.pdf

16. Li Y, Klena NT, Gabriel GC, Liu X, Kim AJ, Lemke K, et al. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature. 2015;521(7553):520-4.

17. Kerstjens-Frederikse WS, van de Laar IM, Vos YJ, Verhagen JM, Berger RM, Lichtenbelt KD, et al. Cardiovascular malformations caused by NOTCH1 mutations do not keep left: data on 428 probands with left-sided CHD and their families. Genet Med. 2016;18(9):914-23.

18. Moore KL, Persaud TVN. Aparato Cardiovascular. En: Embriología Clínica. 8ª ed. Barcelona: Elsevier; 2011. p. 286-336.

19. Ugur B, Chen K, Bellen HJ. Drosophila tools and assays for the study of human diseases. Dis Model Mech. 2016;9(3):235-44.

20. Giraldo M, Parra S, Rojas M. Señalización Celular. En: Patiño PJ, editor. Biología de la célula. Antioquia: Fondo Editorial Biogénesis; 2014. p.219-31.

21. Sánchez Hernández D, Guerrero Vega I. Función de ihog, boi, dally y dmwif en la formación del gradiente morfogenético de hedgehog en el disco imaginal de ala de drosophila. Análisis de la divergencia funcional de los factores wif-1 humano y de Drosophila [Tesis Doctoral en Internet]. Madrid: Universidad Autónoma de Madrid; 2013 [citado 10 Oct 2018]. Disponible en: https://repositorio.uam.es/xmlui/handle/10486/662022

22. Calcagni G, Unolt M, Digilio MC, Baban A, Versacci P, Tartaglia M, et al. Congenital heart disease and genetic syndromes: New insights into molecular mechanisms. Expert Rev Mol Diagn. 2017;17(9):861-70.

23. An Y, Duan W, Huang G, Chen X, Li L, Nie C, et al. Genome-wide copy number variant analysis for congenital ventricular septal defects in Chinese Han population. BMC Med Genomics [Internet]. 2016[citado 6 Oct 2018];9:2. Disponible en: https://bmcmedgenomics.biomedcentral.com/track/pdf/10.1186/s12920-015-0163-4

24. Han H, Chen Y, Liu G, Han Z, Zhao Z, Tang Y. GATA4 transgenic mice as an in vivo model of congenital heart disease. Int J Mol Med. 2015;35(6):1545-53.

25. Lantigua Cruz A. Defectos congénitos de origen genético y ambiental. En: Lantigua Cruz A. Introducción a la Genética Médica. 2ª Ed. La Habana: Editorial Ciencias Médicas; 2011. p. 306-41.

26. Sanchez-Castro M, Pichon O, Briand A, Poulain D, Gournay V, David A, et al. Disruption of the SEMA3D gene in a patient with congenital heart defects. Hum Mutat. 2015;36(1):30-3.

27. Li F, Zhou J, Zhao DD, Yan P, Li X, Han Y, et al. Characterization of SMAD3 gene variants for possible roles in ventricular septal defects and other congenital heart diseases. PLoS ONE [Internet]. 2015 [citado 10 Oct 2018];10(6):e0131542. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131542

28. Theis JL, Hrstka SC, Evans JM, O'Byrne MM, de Andrade M, O'Leary PW, et al. Compound heterozygous NOTCH1 mutations underlie impaired cardiogenesis in a patient with hypoplastic left heart syndrome. Hum Genet. 2015;134(9):1003-11.

Published

2019-07-14

How to Cite

1.
Taboada Lugo N. Advances in the knowledge of the molecular and cellular bases of congenital heart diseases. Part 1 of 2: Cardiac morphogenesis. CorSalud [Internet]. 2019 Jul. 14 [cited 2025 Jun. 28];11(3):233-40. Available from: https://revcorsalud.sld.cu/index.php/cors/article/view/350

Issue

Section

REVIEW ARTICLE