Pregestational obesity as a cardiometabolic risk

Authors

  • Juan A. Suárez González
  • Mario Gutiérrez Machado Hospital Materno Mariana Grajales Santa Clara, Villa Clara

Abstract

Introduction: Obesity is considered a risk factor for cardiovascular disease.

Objective: To characterize anthropometric and analytical parameters to measure the degree of obesity and its association with cardiometabolic risk factors.

Method: We conducted a cross-sectional analytical study in a group of pregnant women who started their pregnancy exhibiting a body mass index above 25 kg/m2 (overweight and obese) with an intentional sample of 184 pregnant women. Variables assessed were: age, height, weight, nutritional status and weight gain; subsequently, the prevalence of obesity was calculated and weight gain at the end of pregnancy was evaluated. Descriptive statistics were performed for the analysis of the variables using the SPSS v. 20 statistical program.

Results: There was a predominance of pregnant women evaluated as class I obese (134), representing 72.8%. All four indices related to cardiometabolic risk were highly prevalent.

Conclusions: The prevalence of abdominal obesity was high in the sample studied. Anthropometric and analytical variables analyzed showed cardiometabolic risk values from early detection of pregnancy.

Downloads

Download data is not yet available.

References

1. Pacheco-Romero J. Gestación en la mujer obesa: consideraciones especiales. An Fac Med. 2017;78(2):207-14. DOI: http://dx.doi.org/10.15381/anales.v78i2.13219

2. Sánchez-Carrillo V, Ávila-Vergara MA, Peraza-Garay F, Vadillo-Ortega F, Palacios-González B, García-Benavente D. Complicaciones perinatales asociadas con la ganancia excesiva de peso durante el embarazo. Ginecol Obstet Méx. 2017;85(2):64-70.

3. Knight BA, Shields BM, Brook A, Hill A, Bhat DS, Hattersley AT, et al. Lower Circulating B12 Is Associated with Higher Obesity and Insulin Resistance during Pregnancy in a Non-Diabetic White British Population. PLoS One [Internet]. 2015 [citado 13 Feb 2020];10(8):e0135268. Disponible en: https://doi.org/10.1371/journal.pone.0135268

4. Marchi J, Berg M, Dencker A, Olander EK, Begley C. Risks associated with obesity in pregnancy, for the mother and baby: a systematic review of reviews. Obes Rev. 2015;16(8):621-38. DOI: https://doi.org/10.1111/obr.12288

5. Fernández JJ, Paublete MD, González MD, Carral F, Carnicer C, Vilar Á, et al. Sobrepeso y obesidad maternos como factores de riesgo independientes para que el parto finalice en cesárea. Nutr Hosp. 2016;33(6):1324-9. DOI: https://doi.org/10.20960/nh.778

6. Li X, Tan H, Huang X, Zhou S, Hu S, Wang X, et al. Similarities and differences between the risk factors for gestational hypertension and preeclampsia: A population based cohort study in south China. Pregnancy Hypertens. 2016;6(1):66-71. DOI: https://doi.org/10.1016/j.preghy.2015.11.004

7. Carneiro AK, Santana LC, Cuhna C, Eickemberg M, De Almeida P, Barbosa L. Anthropometric clinical indicators in the assessment of visceral obesity: an update. Nutr Clín Diet Hosp. 2016;36(2):168-79. DOI: https://doi.org/10.12873/362carneirororiz

8. Ma CM, Lu N, Wang R, Liu XL, Lu Q, Yin FZ. Three novel obese indicators perform better in monitoring management of metabolic syndrome in type 2 diabetes. Sci Rep [Internet]. 2017 [citado 18 Feb 2020];7(1):9843. Disponible en: https://doi.org/10.1038/s41598-017-10446-3

9. Siervo M, Lara J, Celis-Morales C, Vacca M, Oggioni C, Battezzati A, et al. Age-related changes in basal substrate oxidation and visceral adiposity and their association with metabolic syndrome. Eur J Nutr. 2016;55(4):1755-67. DOI: https://doi.org/10.1007/s00394-015-0993-z

10. Bryce A, Alegría E, San Martín MG. Obesidad y riego cardiovascular. An Fac Med. 2017;78(2):202-6. DOI: http://dx.doi.org/10.15381/anales.v78i2.13218

11. Molina de Salazar DI, Muñoz-Gómez D. Síndrome metabólico en la mujer. Rev Colomb Cardiol. 2018;25(Supl 1):21-9. DOI: https://doi.org/10.1016/j.rccar.2017.12.006

12. United Nations. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables [Internet]. Working Paper Nº ESA/P/WP/248. New York: UN Department of Economic and Social Affairs, Population Division; 2017 [citado 3 Mar 2020]. Disponible en: https://population.un.org/wpp/publications/files/wpp2017_keyfindings.pdf

13. Ignell C, Ekelund M, Anderberg E, Berntorp K. Model for individual prediction of diabetes up to 5 years after gestational diabetes mellitus. Springerplus [Internet]. 2016 [citado 4 Mar 2020];5:318. Disponible en: https://dx.doi.org/10.1186/s40064-016-1953-7

14. Nielsen TRH, Lausten-Thomsen U, Fonvig CE, Bøjsøe C, Pedersen L, Bratholm PS, et al. Dyslipidemia and reference values for fasting plasma lipid concentrations in Danish/North-European White children and adolescents. BMC Pediatr [Internet]. 2017 [citado 5 Mar 2020];17(1):116. Disponible en: https://doi.org/10.1186/s12887-017-0868-y

15. Lartey A, Marquis GS, Aryeetey R, Nti H. Lipid profile and dyslipidemia among school-age children in urban Ghana. BMC Public Health [Internet]. 2018 [citado 6 Mar 2020];18(1):320. Disponible en: https://doi.org/10.1186/s12889-018-5196-0

16. Ninatanta JA, Núñez LA, García SA, Romaní F. Factores asociados a sobrepeso y obesidad en estudiantes de educación secundaria. Rev Pediatr Aten Primaria. 2017;19(75):209-21.

17. James M, Varghese TP, Sharma R, Chand S. Association between metabolic syndrome and diabetes mellitus according to International Diabetic Federation and National Cholesterol Education Program Adult Treatment Panel III criteria: a Cross-sectional study. J Diabetes Metab Disord. 2020;19(1):437-43. DOI: https://doi.org/10.1007/s40200-020-00523-2

18. von Bibra H, Saha S, Hapfelmeier A, Müller G, Schwarz PEH. Impact of the Triglyceride/High-Density Lipoprotein Cholesterol Ratio and the Hypertriglyceremic-Waist Phenotype to Predict the Metabolic Syndrome and Insulin Resistance. Horm Metab Res. 2017;49(7):542-9. DOI: https://doi.org/10.1055/s-0043-107782

19. Abbs ES, Viñoles J, Alarcón JO, Johnson HM, Zunt JR. High prevalence of cardiovascular risk factors in Peruvian adolescents living in a peri-urban shantytown: a cross-sectional study. J Health Popul Nutr [Internet]. 2017 [citado 7 Mar 2020];36(1):19. Disponible en: https://doi.org/10.1186/s41043-017-0093-1

20. Ninatanta JA, Núñez LA, García SA, Romaní F. Frecuencia de síndrome metabólico en residentes de una región andina del Perú. Rev Peru Med Exp Salud Pública. 2016;33(4):640-50. DOI: http://dx.doi.org/10.17843/rpmesp.2016.334.2546

21. Dhuper S, Bayoumi NS, Shah YD, Mehta S. Ethnic Differences in Lipid Profiles of Overweight, Obese, and Severely Obese Children and Adolescents 6-19 Years of Age. Child Obes. 2017;13(3):236-41. DOI: https://doi.org/10.1089/chi.2016.0208

Published

2021-04-18

How to Cite

1.
Suárez González JA, Gutiérrez Machado M. Pregestational obesity as a cardiometabolic risk. CorSalud [Internet]. 2021 Apr. 18 [cited 2025 Jun. 23];13(2):189-94. Available from: https://revcorsalud.sld.cu/index.php/cors/article/view/575

Issue

Section

ORIGINAL ARTICLES