Early activation of the cardiovascular sympathetic reflex is independent of the occlusion time during reactive hyperemia
Abstract
Introduction: Reactive hyperemia is a technique where rapid and exaggerated reperfusion is applied to an organ or tissue when circulation is restored after a period of total arterial occlusion.
Objective: To analyze the role of occlusion time on dynamic changes in autonomic activation during reactive hyperemia.
Method: Healthy individuals (n=30) aged 18 to 25 years old participated in this study. Vascular reactivity was assessed by measuring the dynamic changes in finger pulse volume amplitude and pulse transit time relative to the RR intervals in the test (occluded arm) and control arm (contralateral non-occluded arm) during one, three and five minutes of occlusion using two separate photoplethysmographic sensors. Heart rate variability was calculated from the simultaneously acquired electrocardiogram signal to monitor the dynamic changes in cardiac autonomic nervous system activity. The variables analysis of all signals was displayed every one second in the average response graphics.
Results: Time-varying analysis of the vascular and autonomic response during reactive hyperemia demonstrated the presence of a characteristic response pattern with an increase in the sympathetic index and a decrease in the parasympathetic index between the eight and ten seconds, an increase in heart rate at 20 seconds and a progressive increase in pulse volume amplitude during the first 60 seconds after occlusion; regardless of the time of occlusion. In addition, there was a decrease in pulse transit time relative to RR intervals, followed by an increase; regardless of occlusion time.
Conclusions: Early cardiovascular sympathetic activation during reactive hyperemia is independent from occlusion time, suggesting a reflex cardiovascular autonomic response involved in the generation of the physiological phenomenon of reactive hyperemia.
Downloads
References
1. Leeson P, Thorne S, Donald A, Mullen M, Clarkson P, Deanfield J. Non-invasive measurement of endothelial function: effect on brachial artery dilatation of graded endothelial dependent and independent stimuli. Heart. 1997;78(1):22-7. DOI: https://doi.org/10.1136/hrt.78.1.22
2. Jasperse JL, Shoemaker JK, Gray EJ, Clifford PS. Positional differences in reactive hyperemia provide insight into initial phase of exercise hyperemia. J Appl Physiol (1985). 2015;119(5):569-75. DOI: https://doi.org/10.1152/japplphysiol.01253.2013
3. Rosenberry R, Nelson MD. Reactive hyperemia: a review of methods, mechanisms, and considerations. Am J Physiol Regul Integr Comp Physiol. 2020;318(3):605-18. DOI: https://doi.org/10.1152/ajpregu.00339.2019
4. Mohiaddin RH, Gatehouse eD, Moon JC, Youssuffidin M, Yang GZ, Firmin DN, et al. Assessment of reactive hyperaemia using real time zonal echo-planar flow imaging. J Cardiovasc Magn Reson. 2002;4(2):283-7. DOI: https://doi.org/10.1081/jcmr-120003954
5. Sidhu JS, Newey VR, Nassiri DK, Kaski JC. A rapid and reproducible on line automated technique to determine endothelial function. Heart. 2002;88(3):289-92. DOI: https://doi.org/10.1136/heart.88.3.289
6. Reriani M, Sara JD, Flammer AJ, Gulati R, Li J, Rihal C, et al. Coronary endothelial function testing provides superior discrimination compared with standard clinical risk scoring in prediction of cardiovascular events. Coron Artery Dis. 2016;27(3):213-20. DOI: https://doi.org/10.1097/mca.0000000000000347
7. Lenkey Z, Illyés M, Böcskei R, Husznai R, Sárszegi Z, Meiszterics Z, et al. Comparison of arterial stiffness parameters in patients with coronary artery disease and diabetes mellitus using Arteriograph. Physiol Res. 2014;63(4):429-37. DOI: https://doi.org/10.33549/physiolres.932524
8. Zahedi E, Jaafar R, Ali MA, Mohamed AL, Maskon O. Finger photoplethysmogram pulse amplitude changes induced by flow-mediated dilation. Physiol Meas. 2008;29(5):625-37. DOI: https://doi.org/10.1088/0967-3334/29/5/008
9. Onkelinx S, Cornelissen V, Goetschalckx K, Thomaes T, Verhamme P, Vanhees L. Reproducibility of different methods to measure the endothelial function. Vasc Med. 2012;17(2):79-84. DOI: https://doi.org/10.1177/1358863x12436708
10. Kandhai-Ragunath JJ, Jørstad HT, de Man FH, Peters RJ, von Birgelen C. Approaches for non-invasive assessment of endothelial function: focus on peripheral arterial tonometry. Neth Heart J. 2013;21(5):214-8. DOI: https://doi.org/10.1007/s12471-011-0202-5
11. Tomiyama H, Yoshida M, Higashi Y, Takase B, Furumoto T, Kario K, et al. Autonomic nervous activation triggered during induction of reactive hyperemia exerts a greater influence on the measured reactive hyperemia index by peripheral arterial tonometry than on flow-mediated vasodilatation of the brachial artery in patients with hypertension. Hypertens Res. 2014;37(10):914-8. DOI: https://doi.org/10.1038/hr.2014.103
12. Hijmering ML, Stroes ES, Olijhoek J, Hutten BA, Blankestijn PJ, Rabelink TJ. Sympathetic activation markedly reduces endothelium-dependent, flow-mediated vasodilation. J Am Coll Cardiol. 2002;39(4):683-8. DOI: https://doi.org/10.1016/s0735-1097(01)01786-7
13. Padilla J, Young CN, Simmons GH, Deo SH, Newcomer SC, Sullivan JP, et al. Increased muscle sympathetic nerve activity acutely alters conduit artery shear rate patterns. Am J Physiol Heart Circ Physiol. 2010;298(4):H1128-35. DOI: https://doi.org/10.1152/ajpheart.01133.2009
14. Yoshida M, Tomiyama H, Shiina K, Odaira M, Yamashina A. The difference of the influence of autonomic nervous activation caused by reactive hyperemia on two different endothelial function tests. Europ Heart J. 2013;34(Suppl 1):1436. DOI: https://doi.org/10.1093/eurheartj/eht308.P1436
15. Bade G, Chandran DS, Kumar Jaryal A, Talwar A, Deepak KK. Contribution of systemic vascular reactivity to variability in pulse volume amplitude response during reactive hyperemia. Eur J Appl Physiol. 2019;119(3):753-60. DOI: https://doi.org/10.1007/s00421-018-04066-6
16. Thijssen DH, Atkinson CL, Ono K, Sprung VS, Spence AL, Pugh CJ, et al. Sympathetic nervous system activation, arterial shear rate, and flow-mediated dilation. J Appl Physiol (1985). 2014;116(10):1300-7. DOI: https://doi.org/10.1152/japplphysiol.00110.2014
17. Spranger MD, Kaur J, Sala-Mercado JA, Machado TM, Krishnan AC, Alvarez A, et al. Attenuated muscle metaboreflex-induced pressor response during postexercise muscle ischemia in renovascular hypertension. Am J Physiol Regul Integr Comp Physiol. 2015;308(7):R650-8. DOI: https://doi.org/10.1152/ajpregu.00464.2014
18. Cuadra Sanz M, Rossi E, Delisle Rodríguez D, Mántaras MC, Perrone MS, Fainstein D, et al. Sistema para el registro simultáneo de la onda de pulso y el electrocardiograma orientado al estudio de la regulación autonómica. En: 4th Int In Conf FIE’08 [Internet]; 2008 [citado 21 Feb 2021]. Disponible en: https://bit.ly/3UcGlwt
19. Manikandan MS, Soman KP. A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomed Signal Process Control. 2012;7(2):118-28. DOI: https://doi.org/10.1016/j.bspc.2011.03.004
20. Thijssen DH, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA, et al. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol. 2011;300(1):2-12. DOI: https://doi.org/10.1152/ajpheart.00471.2010
21. Carrazana-Escalona R, Ricardo-Ferro BT, Fernández-de la Vara Prieto R, Sánchez-Hechavarría ME. Algoritmo para la detección de puntos clínicos de interés de la onda de pulso arterial. Rev Cuba Inform Méd [Internet]. 2018 [citado 23 Feb 2021];10(1):40-8. Disponible en: http://revinformatica.sld.cu/index.php/rcim/article/view/259/pdf_72
22. Boushel R. Muscle metaboreflex control of the circulation during exercise. Acta Physiol (Oxf). 2010;199(4):367-83. DOI: https://doi.org/10.1111/j.1748-1716.2010.02133.x
23. Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate variability. Front Psychol [Internet]. 2014 [citado 23 feb 2021];5:1040. Disponible en: https://doi.org/10.3389/fpsyg.2014.01040
24. Selvaraj N, Jaryal AK, Santhosh J, Anand S, Deepak KK. Monitoring of reactive hyperemia using photoplethysmographic pulse amplitude and transit time. J Clin Monit Comput. 2009;23(5):315-22. DOI: https://doi.org/10.1007/s10877-009-9199-3
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.