Dynamics of cardiac autonomic regulation during isometric weight-bearing test in hypertensive patients
Abstract
Introduction: The sustained weight test (SWT) is an isometric exercise exploration that has great practical value when performing extensive studies on high blood pressure; however, the dynamics of cardiac autonomic regulation during this test are not well known.
Objective: To determine variations in the dynamics of cardiac autonomic regulation and in hemodynamic response during SWT in hypertensive patients.
Method: A quasi-experimental study was performed on 15 hypertensive patients of both genders, compared with 30 normotensive individuals; measuring blood pressure, sample entropy and heart rate variability (HRV) in time-frequency with the Continuous Wavelet Transform Morlet-type (CWT-Morlet) through the electrocardiographic signal of the AD Instruments polygraph in the functional states of rest and during the SWT.
Results: A significant increase in heart rate and blood pressure was found, as well as a decrease in spectral entropy in the functional states of normotensive and hypertensive patients. In hypertensive patients, there was an increased early response pattern with multiple fluctuations during the SWT in time-frequency analysis of HRV with the CWT-Morlet.
Conclusions: The SWT produces an increase in blood pressure, which is more frequent and evident in patients with high blood pressure. Cardiac autonomic regulation during SWT increases the sympathetic component and decreases the parasympathetic one, which manifests –in hypertensive patients– with a pattern of imbalance in the regulation of sympathetic and parasympathetic responses.Downloads
References
1. Grassi G. Neuroadrenergic abnormalities in hypertension and hypertension-related cardiovascular disease. Hipertens Riesgo Vasc. 2013;30(2):70-4. DOI: https://doi.org/10.1016/j.hipert.2013.03.001
2. Benet-Rodríguez M, Apollinaire-Peninni JJ, Leon-Regal ML, Curbelo-Pérez Y. Desequilibrio autonómico de su relación con hiperreactividad cardiovascular, resistencia a la insulina e hipertensión arterial. Medisur [Internet]. 2006 [citado 25 feb 2021];4(2):59-65. Disponible en: http://www.medisur.sld.cu/index.php/medisur/article/view/203/4913
3. Palma Gámiz JL, Arribas Jiménez A, González Juanatey JR, Marín Huerta E, Martín-Ambrosio ES. Guías de práctica clínica de la Sociedad Española de Cardiología en la monitorización ambulatoria del electrocardiograma y presión arterial. Rev Esp Cardiol. 2000;53(1):91-109. DOI: https://doi.org/10.1016/s0300-8932(00)75066-4
4. Bravi A, Longtin A, Seely AJ. Review and classification of variability analysis techniques with clinical applications. Biomed Eng Online [Internet]. 2011 [citado 27 Feb 2021];10:90. Disponible en: https://doi.org/10.1186/1475-925x-10-90
5. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93(5):1043-65.
6. Mark AL. The sympathetic nervous system in hypertension: a potential long-term regulator of arterial pressure. J Hypertens Suppl. 1996;14(5):S159-65.
7. Paz Basanta H, Ventura Espina JL, Rojas Rodríguez I, Rivero de la Torre JR, González Paz H, Menéndez Carrasco J. Valor de la prueba del peso sostenido para pesquisajes de hipertension arterial a la poblacion. Medicentro [Internet]. 1997 [citado 27 Feb 2021];1(2). Disponible en: http://www.medicentro.sld.cu/index.php/medicentro/article/view/9/9
8. González-Velázquez VE, Pedraza-Rodríguez EM, Carrazana-Escalona R, Moreno-Padilla M, Muñoz-Bustos GA, Sánchez-Hechavarría ME. Cardiac vagal imbalance to the isometric sustained weight test in adolescents with emotional eating behavior. Physiology & Behavior. 2020;223:112994. DOI: https://doi.org/10.1016/j.physbeh.2020.112994
9. Ortiz-Alcolea L, Cutiño-Clavel I, Rizo-Rodríguez RR, Lazo Herrera LA, Albarrán-Torres FA, Ibarra-Peso JM, et al. Regulación autonómica cardiovascular durante la prueba del peso sostenido en pacientes sanos y diabéticos tipo 2. Rev Cuban Invest Bioméd [Internet]. 2020 [citado 27 Feb 2021];39(1):e361. Disponible en: http://www.revibiomedica.sld.cu/index.php/ibi/article/view/361
10. Rodríguez Pena A, Guirado Blanco O, Paz González HJ, Cárdenas Rodríguez AE. Patrones hemodinámicos y respuesta al ejercicio isométrico en sujetos normotensos, prehipertensos e hipertensos: diferencias de género. Medicentro [Internet]. 2018 [citado 28 Feb 2021];22(3):228-37. Disponible en: http://medicentro.sld.cu/index.php/medicentro/article/view/2554
11. Ballesteros-Hernández M, Guirado Blanco O, Alfonso-Rodríguez J, Marrero-Martínez JA, Fernández-Caraballo D, Heredia-Ruiz D. Concentraciones de oligoelementos y reactividad vascular en mujeres en edad fértil y posmenopáusica. Medicentro [Internet]. 2017 [citado 28 Feb 2021];21(4):316-22. Disponible en: http://medicentro.sld.cu/index.php/medicentro/article/view/2369
12. León-Regal M, Benet-Rodríguez M, Mass-Sosa L, Willians-Serrano S, González-Otero L, León-Valdés A. La hiperreactividad cardiovascular como factor predictivo de hipertensión arterial en mujeres. Medisur [Internet]. 2016 [citado 1 Mar 2021];14(3):269-79. Disponible en: http://medisur.sld.cu/index.php/medisur/article/view/3095
13. Rodríguez Pena A, Guirado Blanco O, González Paz HJ, Ballesteros Hernández M, Casas Blanco JC, Cárdenas Rodríguez AE. Balance autonómico basal y durante el ejercicio isométrico en jóvenes con diferente reactividad cardiovascular. CorSalud [Internet]. 2019 [citado 2 Mar 2021];11(1):11-20. Disponible en: http://www.revcorsalud.sld.cu/index.php/cors/article/view/435
14. Sabarimalai-Manikandan M, Soman KP. A new method to detect R peaks in the electrocardiogram signal (ECG). Biomed Signal processing Control. 2012;7(2):118-28. DOI: https://doi-org.dti.sibucsc.cl/10.1016/j.bspc.2011.03.004
15. Ramshur JT. Design, evaluation and application of heart rate variability analysis software (HRVAS) [Tesis]. Memphis: University of Memphis [Internet]; 2010 [citado 3 Mar 2021]. Disponible en: https://digitalcommons.memphis.edu/cgi/viewcontent.cgi?article=1191&context=etd
16. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):H2039-49. DOI: https://doi.org/10.1152/ajpheart.2000.278.6.h2039
17. Naranjo Orellana J, De La Cruz Torres B. Entropy and multiscale temporal irreversibility in the analysis of complex systems in human physiology. Rev Andal Med Deport. 2010;3(1):29-32.
18. Benet-Rodríguez M, Morejón-Giraldoni A. Hiperreactividad cardiovascular: un marcador de riesgo poco conocido en la predicción de la hipertensión arterial. En: Consejo Nacional de Sociedades Científicas del Ministerio de Salud Pública de Cuba. Premio Anual de Salud 2012. 37 ed. La Habana: ECIMED; 2013. p. 88-96.
19. Torres-Leyva M, Carrazana-Escalona R, Ormigó-Polo LE, Ricardo-Ferro BT, López-Galán E, Ortiz-Alcolea L, et al. Respuesta autonómica cardiovascular durante la prueba isométrica cubana del peso sostenido. CorSalud [Internet]. 2019 [citado 3 Mar 2021];11(1):1-10. Disponible en: http://www.revcorsalud.sld.cu/index.php/cors/article/view/342
20. O'Hare JA, Murnaghan DJ. Failure of anti-hypertensive drugs to control blood pressure rise with isometric exercise in hypertension. Postgrad Med J. 1981;57(671):552-5. DOI: https://doi.org/10.1136/pgmj.57.671.552
21. Cantor A, Gold B, Gueron M, Cristal N, Prajgrod G, Shapiro Y. Isotonic (dynamic) and isometric (static) effort in the assessment and evaluation of diastolic hypertension: correlation and clinical use. Cardiology. 1987;74(2):141-6. DOI: https://doi.org/10.1159/000174188
22. Leuenberger UA. The muscle metaboreflex: reining in the heart? J Appl Physiol (1985). 2010;109(2):263-4. DOI: https://doi.org/10.1152/japplphysiol.00547.2010
23. Watanabe K, Ichinose M, Tahara R, Nishiyasu T. Individual differences in cardiac and vascular components of the pressor response to isometric handgrip exercise in humans. Am J Physiol Heart Circ Physiol. 2014;306(2):H251-60. DOI: https://doi.org/10.1152/ajpheart.00699.2013
24. Drew RC. Baroreflex and neurovascular responses to skeletal muscle mechanoreflex activation in humans: an exercise in integrative physiology. Am J Physiol Regul Integr Comp Physiol. 2017;313(6):654-9. DOI: https://doi.org/10.1152/ajpregu.00242.2017
25. Bond V, Curry BH, Adams RG, Obisesan T, Pemminati S, Gorantla VR, et al. Cardiovascular Responses to an Isometric Handgrip Exercise in Females with Prehypertension. N Am J Med Sci. 2016;8(6):243-9. DOI: https://doi.org/10.4103/1947-2714.185032
26. Spranger MD, Kaur J, Sala-Mercado JA, Machado TM, Krishnan AC, Alvarez A, et al. Attenuated muscle metaboreflex-induced pressor response during postexercise muscle ischemia in renovascular hypertension. Am J Physiol Regul Integr Comp Physiol. 2015;308(7):650-8. DOI: https://doi.org/10.1152/ajpregu.00464.2014
27. Pal GK, Adithan C, Ananthanarayanan PH, Pal P, Nanda N, Thiyagarajan D, et al. Association of sympathovagal imbalance with cardiovascular risks in young prehypertensives. Am J Cardiol. 2013;112(11):1757-62. DOI: https://doi.org/10.1016/j.amjcard.2013.07.040
28. Schroeder EB, Liao D, Chambless LE, Prineas RJ, Evans GW, Heiss G. Hypertension, blood pressure, and heart rate variability: the Atherosclerosis Risk in Communities (ARIC) study. Hypertension. 2003;42(6):1106-11. DOI: https://doi.org/10.1161/01.hyp.0000100444.71069.73
29. Gladwell VF, Fletcher J, Patel N, Elvidge LJ, Lloyd D, Chowdhary S, et al. The influence of small fibre muscle mechanoreceptors on the cardiac vagus in humans. J Physiol. 2005;567(Pt 2):713-21. DOI: https://doi.org/10.1113/jphysiol.2005.089243
30. Martínez-Lavín M. Caos, complejidad y cardiología. Arch Cardiol Mex. 2012;82(1):54-8.
31. Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng CK, et al. Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace. 2015;17(9):1341-53. DOI: https://doi.org/10.1093/europace/euv015
32. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett. 2002;89(6):068102. DOI: https://doi.org/10.1103/physrevlett.89.068102
33. Goldberger AL, Peng CK, Lipsitz LA. What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging. 2002;23(1):23-6. DOI: https://doi.org/10.1016/s0197-4580(01)00266-4
34. Poddar MG, Kumar V, Sharma YP. Heart Rate Variability based classification of normal and hypertension cases by Linear-nonlinear Method. Def Sci J. 2014;64(6):542-8. DOI: https://doi.org/10.14429/dsj.64.7867
35. Porta A, Gnecchi-Ruscone T, Tobaldini E, Guzzetti S, Furlan R, Montano N. Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J Appl Physiol (1985). 2007;103(4):1143-9. DOI: https://doi.org/10.1152/japplphysiol.00293.2007
36. Fares SA, Habib JR, Engoren MC, Badr KF, Habib RH. Effect of salt intake on beat-to-beat blood pressure nonlinear dynamics and entropy in salt-sensitive versus salt-protected rats. Physiol Rep [Internet]. 2016 [citado 10 Mar 2021];4(11):e12823. Disponible en: https://doi.org/10.14814/phy2.12823
37. Perpiñan G, Severeyn E, Altuve M, Wong S. Nonlinear heart rate variability measures during the oral glucose tolerance test. Comput Cardiol. 2017;44:1-4. DOI: https://doi.org/10.22489/CinC.2017.148-302
38. Millar PJ, Levy AS, McGowan CL, McCartney N, MacDonald MJ. Isometric handgrip training lowers blood pressure and increases heart rate complexity in medicated hypertensive patients. Scand J Med Sci Sports. 2013;23(5):620-6. DOI: https://doi.org/10.1111/j.1600-0838.2011.01435.x
39. Heffernan KS, Jae SY, Vieira VJ, Iwamoto GA, Wilund KR, Woods JA, et al. C-reactive protein and cardiac vagal activity following resistance exercise training in young African-American and white men. Am J Physiol Regul Integr Comp Physiol. 2009;296(4):1098-105. DOI: https://doi.org/10.1152/ajpregu.90936.2008
40. Weippert M, Behrens M, Gonschorek R, Bruhn S, Behrens K. Muscular contraction mode differently affects autonomic control during heart rate matched exercise. Front Physiol [Internet]. 2015 [citado 11 Mar 2021];6:156. Disponible en: https://doi.org/10.3389/fphys.2015.00156
41. Iellamo F, Pizzinelli P, Massaro M, Raimondi G, Peruzzi G, Legramante JM. Muscle metaboreflex contribution to sinus node regulation during static exercise: insights from spectral analysis of heart rate variability. Circulation. 1999;100(1):27-32. DOI: https://doi.org/10.1161/01.cir.100.1.27
42. Mántaras MC, Carrasco Sosa S, Guillén Mandujano A, González Camarena R, Gaitán González MJ. Time-frequency analysis during continuous incremental isometric exercise. Comput Cardiol. 2005;32:719-22. DOI: https://doi.org/10.1109/CIC.2005.1588205
43. Delaney EP, Greaney JL, Edwards DG, Rose WC, Fadel PJ, Farquhar WB. Exaggerated sympathetic and pressor responses to handgrip exercise in older hypertensive humans: role of the muscle metaboreflex. Am J Physiol Heart Circ Physiol. 2010;299(5):1318-27. DOI: https://doi.org/10.1152/ajpheart.00556.2010
44. Sala-Mercado JA, Spranger MD, Abu-Hamdah R, Kaur J, Coutsos M, Stayer D, et al. Attenuated muscle metaboreflex-induced increases in cardiac function in hypertension. Am J Physiol Heart Circ Physiol. 2013;305(10):1548-54. DOI: https://doi.org/10.1152/ajpheart.00478.2013
45. Matthews EL, Greaney JL, Wenner MM. Rapid onset pressor response to exercise in young women with a family history of hypertension. Exp Physiol. 2017;102(9):1092-9. DOI: https://doi.org/10.1113/ep086466
46. Makino Y, Kawano Y, Okuda N, Horio T, Iwashima Y, Yamada N, et al. Autonomic function in hypertensive patients with neurovascular compression of the ventrolateral medulla oblongata. J Hypertens. 1999;17(9):1257-63. DOI: https://doi.org/10.1097/00004872-199917090-00004
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.