The origin of P-wave dispersion is already solved - End of an era
Abstract
P-wave dispersion (PWD) has been used for more than two decades for the prediction of atrial fibrillation, but its mechanism of production in the electrocardiogram is not known. Two theories, known as local and vectorial have been proposed. It has been possible to elucidate which of the two theories better justifies the occurrence of PWD, using vectorial analysis techniques and magnified digital records in comparison with atrial conduction measurements. Vectorial theory is the best explanation for the origin of PWD. Inhomogeneous atrial conduction (the basis of local theory) has a small but significant contribution to the origin of PWD, but only when there is delayed interatrial conduction. The vectorial justification of the PWD advise against it as a useful parameter for clinical use.
Downloads
References
1. Dilaveris P, Stefanadis C. A valuable non-invasive marker of vulnerability to atrial fibrillation. Proceedings of the 2nd ISHNE Atrial Fibrillation Worldwide Internet Symposium [Internet]. 2007 [citado 22 Ago 2021]. Disponible en: http://af-symposium.grupoakros.com.ar/2007/lectures.php
2. Dilaveris PE, Gialafos EJ, Sideris SK, Theopistou AM, Andrikopoulos GK, Kyriakidis M, et al. Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation. Am Heart J. 1998;135(5 Pt 1):733-8. DOI: https://doi.org/10.1016/s0002-8703(98)70030-4
3. Pérez-Riera AR, de Abreu LC, Barbosa-Barros R, Grindler J, Fernandes-Cardoso A, Baranchuk A. P-wave dispersion: an update. Ind Pacing Electrophysiol J. 2016;16(4):126-33. DOI: https://doi.org/10.1016/j.ipej.2016.10.002
4. Centurión O, Aquino N, Torales J, Scavenius K, Miño L, Sequeira O. P-wave duration and dispersion as a useful conventional electrocardiographic marker for atrial fibrillation prediction. J Cardiol Curr Res [Internet]. 2017 [citado 26 de mayo de 2021];8(3):00285. Disponible en: https://doi.org/10.15406/jccr.2017.08.00285
5. Acampa M, Lazzerini PE, Martini G. How to identify patients at risk of silent atrial fibrillation after cryptogenic stroke: Potential role of P-wave dispersion. J Stroke. 2017;19(2):239-41. DOI: https://doi.org/10.5853/jos.2016.01620
6. Hall JE, Hall ME. Guyton and Hall. Textbook of medical physiology. 14th ed. Philadelphia: Elsevier; 2020.
7. Surawicz B, Knilans T. Chou's electrocardiography in clinical practice. 6th ed. Philadelphia: Saunders Elsevier; 2008.
8. Wijesurendra RS, Casadei B. Mechanisms of atrial fibrillation. Heart. 2019;105(24):1860-7. DOI: https://doi.org/10.136/heartjnl-2018-314267
9. de Groot NMS, Allessie MA. Pathophysiology of atrial fibrillation: Focal patterns of activation. Pacing Clin Electrophysiol. 2019;42(10):1312-9. DOI: https://doi.org/10.111/pace.13777
10. Issa ZF, Miller JM, Zipes DP. Clinical arrhythmology and electrophysiology: A companion to Braunwald's heart disease. 3 ed. Philadelphia: Elsevier; 2019.
11. Nattel S, Heijman J, Voigt N, Wehrens XHT, Dobrev D. The molecular pathophysiology of atrial fibrillation. En: Zipes D, Jalife J, Stevenson WG, editors. Cardiac electrophysiology: From cell to bedside. 7 ed. Philadelphia: Elsevier; 2018. p. 396-408.
12. Furniss GO, Panagopoulos D, Kanoun S, Davies EJ, Tomlinson DR, Haywood GA. The effect of atrial fibrillation ablation techniques on P-wave duration and P-wave dispersion. Heart Lung Circ. 2019;28(3):389-96. DOI: https://doi.org/10.1016/j.hlc.2018.02.003
13. Cuculici A, Guta A, Mandes L, Covaliov A, Patru AE, Ceck C, et al. P-wave dispersion and echocardiographic atrial indices as predictors of paroxysmal atrial fibrillation. Rom J Cardiol. 2019;29(2):229-36.
14. Sultan HI, Mohammed TA, Salih MS. P-wave dispersion in patients with paroxysmal atrial fibrillation in Salahaddin General Hospital, Tikrit, Iraq. J Nat Remedies. 2020;21(5):49-53.
15. Okutucu S, Fatihoglu SG, Sabanoglu C, Bursa N, Sayin BY, Aksoy H, et al. Effects of angiotensin receptor neprilysin inhibition on P-wave dispersion in heart failure with reduced ejection fraction. Herz. 2021;46(Suppl 1):69-74. DOI: https://doi.org/10.1007/s00059-019-04872-4
16. Mahfouz BH, Soltan G, Eltahan E, Yacoub MH, Faheem N. Relation of atrial electromechanical delay to P-wave dispersion on surface ECG using vector velocity imaging in patients with hypertrophic cardiomyopathy. Ann Noninvasive Electrocardiol [Internet]. 2021 [citado 28 de mayo de 2021];26(1):e12801. Disponible en: https://doi.org/10.1111/anec.12801
17. Tosun V, Korucuk N, Kılınç AY, Uygun T, Altekin RE, Güntekin Ü, et al. Evaluation of atrial electromechanical functions in dipper and nondipper hypertension patients using left atrial strain P-wave dispersion and P terminal force. Echocardiography. 2018;35(9):1318-25. DOI: https://doi.org/10.111/echo.14041
18. Chávez-González E, Donoiu I. Utility of P-wave dispersion in the prediction of atrial fibrillation. Curr Health Sci J. 2017;43(1):5-11. DOI: https://doi.org/0.12865/CHSJ.43.01.01
19. Steinberg JS, Altman RK. Don't neglect the electrocardiogram: P-wave proves a potent predictor. JACC: Clin Electrophysiol. 2018;4(4):544-6. DOI: https://doi.org/10.1016/j.jacep.2018.01.005
20. Acampa M, Lazzerini PE, Guideri F, Tassi R, Cartocci A, Martini G. P-wave dispersion and silent atrial fibrillation in cryptogenic stroke: The pathogenic role of inflammation. Cardiovasc & Hemat Dis Drug Targ. 2019;19(3):249-52. DOI: https://doi.org/10.2174/1871529X19666190410145501
21. Fujimoto Y, Yodogawa K, Takahashi K, Tsuboi I, Hayashi H, Uetake S, et al. Noninvasive evaluation of reverse atrial remodeling after catheter ablation of atrial fibrillation by P-wave dispersion. Heart Vessels. 2017;32(11):1375-81. DOI: https://doi.org/10.007/s00380-017-1008-1
22. Canga Y, Emre A, Yuksel GA, Karatas MB, Yelgec NS, Gurkan U, et al. Assessment of atrial conduction times in patients with newly diagnosed Parkinson's disease. Parkinsons Dis [Internet]. 2018 [citado 29 de mayo de 2021 ];2018:2916905. Disponible en: https://doi.org/10.1155/2018/2916905
23. Cagirci G, Cay S, Gulsoy KG, Bayindir C, Vural MG, Firat H, et al. Tissue Doppler atrial conduction times and electrocardiogram interlead P-wave durations with varying severity of obstructive sleep apnea. J Electrocardiol. 2011;44(4):478-82. DOI: https://doi.org/10.1016/j.jelectrocard.2011.03.009
24. Çimen T, Sunman H, Efe TH, Akyel A, Yayla K, Şahan HF, et al. Early changes in atrial conduction times in hypertensive patients with elevated pulse pressure. Rev Port Cardiol. 2017;36(6):453-9. DOI: https://doi.org/10.1016/j.repc.2016.10.012
25. Deniz A, Sahin DY, Kanadasi M, Demir M, Berk IG, Akkus O, et al. Conduction characteristics in atrial fibrillation. Predictive value of tissue Doppler echocardiography. Herz. 2014;39(1):137-41. DOI: https://doi.org/10.1007/s00059-013-3795-1
26. Elsherbiny IAE. Arterial stiffness is associated with tissue doppler atrial conduction times and P-wave dispersion in hypertensive patients. Intern Med. 2012;51(2):147-53. DOI: https://doi.org/10.2169/internalmedicine.51.6345
27. Ermis N, Acikgoz N, Cuglan B, Cansel M, Yagmur J, Tasolar H, et al. Comparison of atrial electromechanical coupling interval and P-wave dispersion in non-dipper versus dipper hypertensive subjects. Blood Press. 2011;20(1):60-6. DOI: https://doi.org/10.3109/08037051.2010.532302
28. Eweda I, Abul-Saud M, Fouad H, Hanna RN, Nammas W. P-wave dispersion and atrial electromechanical delay: Do they vary with the extent of mitral annular calcification? Acta Cardiol. 2016;71(4):449-55. DOI: https://doi.org/10.2143/AC.71.4.3159698
29. Gudul N, Karabag T, Sayin M, Bayraktaroglu T, Aydin M. Atrial conduction times and left atrial mechanical functions and their relation with diastolic function in prediabetic patients. Korean J Intern Med. 2017;32(2):286-94. DOI: https://doi.org/10.3904/kjim.2014.380
30. Irdem A, Aydın Sahin D, Kervancioglu M, Baspinar O, Sucu M, Keskin M, et al. Evaluation of P-wave dispersion, diastolic function, and atrial electromechanical conduction in pediatric patients with subclinical hypothyroidism. Echocardiogr. 2016;33(9):1397-401. DOI: https://doi.org/10.1111/echo.13255
31. Kafes H, Açar B, Asarcıklı L, Gucuk E, Kilic ZMY, Tufekcioglu O. P-wave dispersion and atrial electromechanical delay in patients with inflammatory bowel disease. Cor et Vasa. 2019;61(5):459-63. DOI: https://doi.org/10.33678/cor.2019.035
32. Demir K, Avci A, Kaya Z, Marakoglu K, Ceylan E, Yilmaz A, et al. Assessment of atrial electromechanical delay and P-wave dispersion in patients with type 2 diabetes mellitus. J Cardiol. 2016;67(4):378-83. DOI: https://doi.org/10.1016/j.jjcc.2015.06.003
33. Djikic D, Mujovic N, Dejanovic B, Kocijancic A, Jankovic N, Marinkovic M, et al. Evaluation of atrial conduction time in relation to P wave dispersion in patients with different degree of hypertension arterialis with no history of paroxysmal atrial fibrillation. EP Europace. 2017;19(Supl 3):iii224 [Resumen P1038]. DOI: https://doi.org/10.1093/ehjci/eux151.218
34. Ermis N, Acikgoz N, Yasar E, Tasolar H, Yagmur J, Cansel M, et al. Evaluation of atrial conduction time by P-wave dispersion and tissue Doppler echocardiography in prehypertensive patients. Turk Kardiyol Dern Ars. 2010;38(8):525-30.
35. Akturk E, Yagmur J, Acikgoz N, Ermis N, Cansel M, Karakus Y, et al. Assessment of atrial conduction time by tissue Doppler echocardiography and P-wave dispersion in smokers. J Interv Card Electrophysiol. 2012;34(3):247-53. DOI: https://doi.org/10.1007/s10840-011-9658-x
36. Emiroglu MY, Bulut M, Sahin M, Acar G, Akcakoyun M, Kargin R, et al. Assessment of atrial conduction time in patients with essential hypertension. J Electrocardiol. 2011;44(2):251-56. DOI: https://doi.org/10.1016/j.jelectrocard.2010.09.012
37. Inci S, Nar G, Aksan G, Sipahioʇlu H, Soylu K, Dogan A. P-wave dispersion and atrial electromechanical delay in patients with preeclampsia. Med Prin Pract. 2015;24(6):515-21. DOI: https://doi.org/10.1159/000435857
38. Zehir R, Karabay CY, Kocabay G, Kalayci A, Kaymaz O, Aykan AC, et al. Assessment of atrial conduction time in patients with polycystic ovary syndrome. J Interv Cardiac Electrophysiol. 2014;41(2):137-43. DOI: https://doi.org/10.1007/s10840-014-9925-8
39. Badran HM, Faheem N, Wassely KW, Yacoub M. Relationship of left atrial mechanics to electrical activity on surface electrocardiography in idiopathic dilated cardiomyopathy. Glob Cardiol Sci Pract [Internet]. 2019 [citado 30 de mayo de 2021];2019(1):7. DOI: https://doi.org/10.21542/gcsp.2019.7
40. Johner N, Namdar M, Shah DC. Intra- and interatrial conduction abnormalities: hemodynamic and arrhythmic significance. J Interv Card Electrophysiol. 2018;52(3):293-02. DOI: https://doi.org/10.1007/s10840-018-0413-4
41. Zimmer K, Przywara W, Zyśko D, Sławuta A, Gajek J. The nature of P-wave dispersion - A clinically useful parameter that does not exist. Int J Cardiol. 2016;212:59-60. DOI: https://doi.org/10.1016/j.ijcard.2016.03.03159-60
42. Carmona Puerta R, Chávez González E, Rabassa López-Calleja MA, Lorenzo Martínez E, Cruz Elizundia JM, Padrón Peña G, et al. Atrial conduction explains the occurrence of the P-wave dispersion phenomenon, but weakly. J Arrhyth. 2020;36(6):1083-91. DOI: http://doi.org/10.02/joa3.12444
43. Carmona Puerta R, Lorenzo Martínez E, Rabassa López-Calleja M, Padrón Peña G, Cruz Elizundia JM, Rodríguez González F, et al. Vectorial theory surpasses the local theory in explaining the origin of P-wave dispersion. J Electrocardiol. 2021;66(3):152-60. DOI: https://doi.org/10.1016/j.jelectrocard.2021.04.015
44. Hall JE, Hall ME. Guyton and Hall. Textbook of medical physiology. 14th ed. Philadelphia: Elsevier; 2021.
45. Zawadzki JM, Zimmer K, Przywara W, Zyśko D, Radziejewska J, Sławuta A, et al. The true nature of P-wave dispersion. Adv Clin Exp Med. 2020;29(12):1443-7. DOI: https://doi.org/10.17219/acem/128232
46. Zawadzki J, Mercik J, Marecka A, Zawadzki G, Adamowicz J, Zysko D, et al. P-wave dispersion – fading light of a popular parameter. Eur Heart J. 2020;41(Suppl 2):3449. [Resumen] DOI: https://doi.org/10.1093/ehjci/ehaa946.3449
47. Dilaveris P, Tousoulis D. P-wave dispersion measurement: Methodological considerations. Indian Pacing Electrophysiol J. 2017;17(3):89. DOI: https://doi.org/10.1016/j.ipej.2017.03.001
48. Carmona Puerta R. Interatrial blocks: diagnosis and clinical significance. Med Clin (Barc). 2020;155(5):207-14. DOI: https://doi.org/10.1016/j.medcli.2020.03.011
49. Bayes de Luna A, Martinez Selles M, Bayes Genis A, Elosua R, Baranchuk A. Síndrome de Bayés. Lo que todo clínico debe conocer. Rev Esp Cardiol. 2020;73(9):758-62. DOI: https://doi.org/10.1016/j.recesp.2020.04.003
50. Bayes de Luna A, Bayes Genis A. Clinical implications of advanced interatrial block: Bayes syndrome. Med Clin (Barc). 2021;156(5):233-34. DOI: https://doi.org/10.1016/j.medcli.2020.10.013
51. Bayes de Luna A, Baranchuk A, Escobar Robledo AL, Masso van Roessel A, Martínez-Sellés M. Diagnosis of interatrial block. J Ger Cardiol. 2017;14(3):161-5. DOI: https://doi.org/10.11909/j.issn.1671-5411.2017.03.007
52. Zawadzki JM, Zawadzki G, Radziejewska J, Gajek JJ. Why the P-wave should be measured precisely? Folia Cardiologica. 2021;16(1):23-9. DOI: https://doi.org/10.5603/FC.2021.0004
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.