Myocarditis due to COVID-19 in a pediatric patient

Authors

  • Flavia León Sardiñas
  • Liliete Caraballoso García
  • Ivelyse Cabeza Echevarría
  • Harold Olivera Fleites
  • Ramiro Guedez Díaz
  • Yuliet Hernández Blanco

Abstract

Current knowledge about the COVID-19 pandemic is still limited, especially in the pediatric age group. So far, children are considered to be a minimally affected population; however, physicians from different parts of the world have recognized a new pediatric multi-systemic inflammatory syndrome, that provokes a multiple organ dysfunction, from which the heart is not exempted. The direct action of the virus on myocardial cells, as well as the cytokines storm –triggered by the infection– are responsible for the myocarditis developed in these patients. In this article a case with criteria of myocarditis associated with COVID-19 is described. Achieving an early diagnosis of myocarditis secondary to SARS-CoV-2 infection in the current epidemiological context allows a correct and timely therapeutic approach, avoiding the torpid evolution and fatal outcome of this disease, as well as other long-term complications.

Downloads

Download data is not yet available.

References

1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. DOI: https://doi.org/10.1016/s0140-6736(20)30183-5

2. Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. J Emerg Med. 2020;58(4):712-3. DOI: https://doi.org/10.1016/j.jemermed.2020.04.006

3. Zheng F, Liao C, Fan QH, Chen HB, Zhao XG, Xie ZG, et al. Clinical Characteristics of Children with Coronavirus Disease 2019 in Hubei, China. Curr Med Sci. 2020;40(2):275-80. DOI: https://doi.org/10.1007/s11596-020-2172-6

4. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. DOI: https://doi.org/10.1056/nejmoa2002032

5. Xu Y, Li X, Zhu B, Liang H, Fang C, Gong Y, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med. 2020;26(4):502-5. DOI: https://doi.org/10.1038/s41591-020-0817-4

6. Lu X, Zhang L, Du H, Zhang J, Li YY, Qu J, et al. SARS-CoV-2 Infection in Children. N Engl J Med. 2020;382(17):1663-5. DOI: https://doi.org/10.1056/nejmc2005073

7. Castagnoli R, Votto M, Licari A, Brambilla I, Bruno R, Perlini S, et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Children and Adolescents: A Systematic Review. JAMA Pediatr. 2020;174(9):882-9. DOI: https://doi.org/10.1001/jamapediatrics.2020.1467

8. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science. 1992;257(5068):387-9. DOI: https://doi.org/10.1126/science.1631560

9. Belhadjer Z, Méot M, Bajolle F, Khraiche D, Legendre A, Abakka S, et al. Acute heart failure in multisystem inflammatory syndrome in children in the context of global SARS-CoV-2 pandemic. Circulation. 2020;142(5):429-36. DOI: https://doi.org/10.1161/circulationaha.120.048360

10. Inciardi RM, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819-24. DOI: https://doi.org/10.1001/jamacardio.2020.1096

11. Kim IC, Kim JY, Kim HA, Han S. COVID-19-related myocarditis in a 21-year-old female patient. Eur Heart J. 2020;41(19):1859. DOI: https://doi.org/10.1093/eurheartj/ehaa288

12. WHO Statement on the third meeting of the IHR Emergency committee concerning Middle East respiratory syndrome coronavirus (MERS-CoV). Wkly Epidemiol Rec. 2013;88(40):435-6. Enlace: https://www.who.int/publications/i/item/10665-242130

13. Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res. 2004;94(12):1543-53. DOI: https://doi.org/10.1161/01.res.0000130526.20854.fa

14. Sirera R, Salvador A, Roldán I, Talens R, González-Molina A, Rivera M. Quantification of proinflammatory cytokines in the urine of congestive heart failure patients. Its relationship with plasma levels. Eur J Heart Fail. 2003;5(1):27-31. DOI: https://doi.org/10.1016/s1388-9842(02)00165-4

15. Janczewski AM, Kadokami T, Lemster B, Frye CS, McTiernan CF, Feldman AM. Morphological and functional changes in cardiac myocytes isolated from mice overexpressing TNF-alpha. Am J Physiol Heart Circ Physiol. 2003;284(3):H960-9. DOI: https://doi.org/10.1152/ajpheart.0718.2001

16. Irabien-Ortiz Á, Carreras-Mora J, Sionis A, Tauron M. Miocarditis fulminante y COVID-19. Respuesta. Rev Esp Cardiol. 2020;73(10):865-6. DOI: https://doi.org/10.1016/j.recesp.2020.06.015

17. Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL. Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest. 1993;92(5):2303-12. DOI: https://doi.org/10.1172/jci116834

18. Balligand JL, Ungureanu D, Kelly RA, Kobzik L, Pimental D, Michel T, et al. Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest. 1993;91(5):2314-9. DOI: https://doi.org/10.1172/jci116461

19. Sellén Sanchén E, Sellén Crombet J, Sellén Fundora L. Daño miocárdico en la infección por SARS-CoV-2. Finlay [Internet]. 2020 [citado 26 Sep 2021];10(4):413-9. Disponible en: https://revfinlay.sld.cu/index.php/finlay/article/view/870/1914

20. Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, et al. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res. 1997;81(4):627-35. DOI: https://doi.org/10.1161/01.res.81.4.627

21. Yu XW, Chen Q, Kennedy RH, Liu SJ. Inhibition of sarcoplasmic reticular function by chronic interleukin-6 exposure via iNOS in adult ventricular myocytes. J Physiol. 2005;566(Pt 2):327-40. DOI: https://doi.org/10.1113/jphysiol.2005.086686

22. Thielmann M, Dörge H, Martin C, Belosjorow S, Schwanke U, van De Sand A, et al. Myocardial dysfunction with coronary microembolization: signal transduction through a sequence of nitric oxide, tumor necrosis factor-alpha, and sphingosine. Circ Res. 2002;90(7):807-13. DOI: https://doi.org/10.1161/01.res.0000014451.75415.36

23. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, et al. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest. 1996;98(12):2854-65. DOI: https://doi.org/10.1172/jci119114

24. Sivasubramanian N, Coker ML, Kurrelmeyer KM, MacLellan WR, DeMayo FJ, Spinale FG, et al. Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation. 2001;104(7):826-31. DOI: https://doi.org/10.1161/hc3401.093154

25. Irabien-Ortiz Á, Carreras-Mora J, Sionis A, P? mies J, Montiel J, Tauron M. Miocarditis fulminante por COVID-19. Rev Esp Cardiol. 2020;73(6):503-4. DOI: https://doi.org/10.1016/j.recesp.2020.04.001

26. Cui Y, Tian M, Huang D, Wang X, Huang Y, Fan L, et al. A 55-day-old female infant infected with 2019 novel coronavirus disease: Presenting with pneumonia, liver injury, and heart damage. J Infect Dis. 2020;221(11):1775-81. DOI: https://doi.org/10.1093/infdis/jiaa113

Published

2022-11-02

How to Cite

1.
León Sardiñas F, Caraballoso García L, Cabeza Echevarría I, Olivera Fleites H, Guedez Díaz R, Hernández Blanco Y. Myocarditis due to COVID-19 in a pediatric patient. CorSalud [Internet]. 2022 Nov. 2 [cited 2025 Aug. 2];14(3):302-8. Available from: https://revcorsalud.sld.cu/index.php/cors/article/view/934

Issue

Section

CASE REPORTS

Most read articles by the same author(s)